Introduction to Algebraic Independence Theory
In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebrai...
Other Authors: | , |
---|---|
Format: | eBook |
Language: | English |
Published: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2001, 2001
|
Edition: | 1st ed. 2001 |
Series: | Lecture Notes in Mathematics
|
Subjects: | |
Online Access: | |
Collection: | Springer Book Archives -2004 - Collection details see MPG.ReNa |
Summary: | In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e (pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the subject |
---|---|
Physical Description: | XVI, 260 p online resource |
ISBN: | 9783540445500 |