Gorenstein Dimensions

This book is intended as a reference for mathematicians working with homological dimensions in commutative algebra and as an introduction to Gorenstein dimensions for graduate students with an interest in the same. Any admirer of classics like the Auslander-Buchsbaum-Serre characterization of regula...

Full description

Main Author: Christensen, Lars Winther
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2000, 2000
Series:Lecture Notes in Mathematics
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 01917nmm a2200313 u 4500
001 EB000655565
003 EBX01000000000000000508647
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783540400080 
100 1 |a Christensen, Lars Winther 
245 0 0 |a Gorenstein Dimensions  |h Elektronische Ressource  |c by Lars Winther Christensen 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2000, 2000 
300 |a X, 210 p  |b online resource 
505 0 |a Hyperhomology. Basic definitions and notation. Standard functors and morphisms. Resolutions. Almost derived functors. Homological dimensions. Depth and width. Numerical and formal invariants. Dualizing complexes 
653 |a K-Theory 
653 |a Algebra 
653 |a Mathematics, general 
653 |a K-theory 
653 |a Mathematics 
710 2 |a SpringerLink (Online service) 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Lecture Notes in Mathematics 
856 |u http://dx.doi.org/10.1007/BFb0103980?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 512 
520 |a This book is intended as a reference for mathematicians working with homological dimensions in commutative algebra and as an introduction to Gorenstein dimensions for graduate students with an interest in the same. Any admirer of classics like the Auslander-Buchsbaum-Serre characterization of regular rings, and the Bass and Auslander-Buchsbaum formulas for injective and projective dimension of f.g. modules will be intrigued by this book's content. Readers should be well-versed in commutative algebra and standard applications of homological methods. The framework is that of complexes, but all major results are restated for modules in traditional notation, and an appendix makes the proofs accessible for even the casual user of hyperhomological methods