Optimal Periodic Control

This research monograph deals with optimal periodic control problems for systems governed by ordinary and functional differential equations of retarded type. Particular attention is given to the problem of local properness, i.e. whether system performance can be improved by introducing periodic moti...

Full description

Bibliographic Details
Main Author: Colonius, Fritz
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 1988, 1988
Edition:1st ed. 1988
Series:Lecture Notes in Mathematics
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 02181nmm a2200325 u 4500
001 EB000654892
003 EBX01000000000000000507974
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783540391708 
100 1 |a Colonius, Fritz 
245 0 0 |a Optimal Periodic Control  |h Elektronische Ressource  |c by Fritz Colonius 
250 |a 1st ed. 1988 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1988, 1988 
300 |a VI, 177 p  |b online resource 
505 0 |a Optimization theory -- Retarded functional differential equations -- Strong local minima -- Weak local minima -- Local relaxed minima -- Tests for local properness -- A scenario for local properness -- Optimal periodic control of ordinary differential equations 
653 |a Calculus of Variations and Optimization 
653 |a Control theory 
653 |a Systems Theory, Control 
653 |a System theory 
653 |a Mathematical optimization 
653 |a Calculus of variations 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Lecture Notes in Mathematics 
028 5 0 |a 10.1007/BFb0077931 
856 4 0 |u https://doi.org/10.1007/BFb0077931?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 003 
520 |a This research monograph deals with optimal periodic control problems for systems governed by ordinary and functional differential equations of retarded type. Particular attention is given to the problem of local properness, i.e. whether system performance can be improved by introducing periodic motions. Using either Ekeland's Variational Principle or optimization theory in Banach spaces, necessary optimality conditions are proved. In particular, complete proofs of second-order conditions are included and the result is used for various versions of the optimal periodic control problem. Furthermore a scenario for local properness (related to Hopf bifurcation) is drawn up, giving hints as to where to look for optimal periodic solutions. The book provides mathematically rigorous proofs for results which are potentially of importance in chemical engineering and aerospace engineering