Lernen von Kategorien

Die Fähigkeit, die Zuordnung von Reizen zu Klassen oder Kategorien zu erlernen, ist Grundlage nahezu jeden Lernens. Das gilt nicht nur für das Lernen von Menschen oder anderen lebenden Organismen, sondern auch für das Lernen bei künstlich intelligenten Systemen. Martin Heydemann gibt einen Überblick...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:German
Published: Wiesbaden Deutscher Universitätsverlag 1998, 1998
Edition:1st ed. 1998
Series:Studien zur Kognitionswissenschaft
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
Description
Summary:Die Fähigkeit, die Zuordnung von Reizen zu Klassen oder Kategorien zu erlernen, ist Grundlage nahezu jeden Lernens. Das gilt nicht nur für das Lernen von Menschen oder anderen lebenden Organismen, sondern auch für das Lernen bei künstlich intelligenten Systemen. Martin Heydemann gibt einen Überblick über die drei grundlegenden Ansätze, die in der Psychologie zur Erklärung des Lernens von Kategorien beim Menschen herangezogen werden. Ausführlich geht er dabei auf die Verwendung konnektionistischer Modelle (neuronale Netze) ein. Ein neuronales Netz bildet auch die Basis des vom Autor entwickelten IAK-Modells. Mit Hilfe dieses Modells läßt sich eine Vielzahl empirisch beobachtbarer Phänomene des menschlichen Lernens erklären und auf künstliche Lernsysteme übertragen
Physical Description:249 S. 35 Abb online resource
ISBN:9783322976659