Complex Convexity and Analytic Functionals

A set in complex Euclidean space is called C-convex if all its intersections with complex lines are contractible, and it is said to be linearly convex if its complement is a union of complex hyperplanes. These notions are intermediates between ordinary geometric convexity and pseudoconvexity. Their...

Full description

Bibliographic Details
Main Authors: Andersson, Mats, Passare, Mikael (Author), Sigurdsson, Ragnar (Author)
Format: eBook
Language:English
Published: Basel Birkhäuser 2004, 2004
Edition:1st ed. 2004
Series:Progress in Mathematics
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 03018nmm a2200385 u 4500
001 EB000636623
003 EBX01000000000000000489705
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783034878715 
100 1 |a Andersson, Mats 
245 0 0 |a Complex Convexity and Analytic Functionals  |h Elektronische Ressource  |c by Mats Andersson, Mikael Passare, Ragnar Sigurdsson 
250 |a 1st ed. 2004 
260 |a Basel  |b Birkhäuser  |c 2004, 2004 
300 |a XI, 164 p  |b online resource 
505 0 |a 1 Convexity in Real Projective Space -- 1.1 Convexity in real affine space -- 1.2 Real projective space -- 1.3 Convexity in real projective space -- 2 Complex Convexity -- 2.1 Linearly convex sets -- 2.2 ?-convexity: Definition and examples -- 2.3 ?-convexity: Duality and invariance -- 2.4 Open ?-convex sets -- 2.5 Boundary properties of ?-convex sets -- 2.6 Spirally connected sets -- 3 Analytic Functionals and the Fantappiè Transformation -- 3.1 The basic pairing in affine space -- 3.2 The basic pairing in projective space -- 3.3 Analytic functionals in affine space -- 3.4 Analytic functionals in projective space -- 3.5 The Fantappiè transformation -- 3.6 Decomposition into partial fractions -- 3.7 Complex Kergin interpolation -- 4 Analytic Solutions to Partial Differential Equations -- 4.1 Solvability in ?-convex sets -- 4.2 Solvability and P-convexity for carriers -- References 
653 |a Functional analysis 
653 |a Functions of complex variables 
653 |a Functional Analysis 
653 |a Convex geometry  
653 |a Functions of a Complex Variable 
653 |a Convex and Discrete Geometry 
653 |a Discrete geometry 
653 |a Differential Equations 
653 |a Differential equations 
700 1 |a Passare, Mikael  |e [author] 
700 1 |a Sigurdsson, Ragnar  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Progress in Mathematics 
028 5 0 |a 10.1007/978-3-0348-7871-5 
856 4 0 |u https://doi.org/10.1007/978-3-0348-7871-5?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 515.7 
520 |a A set in complex Euclidean space is called C-convex if all its intersections with complex lines are contractible, and it is said to be linearly convex if its complement is a union of complex hyperplanes. These notions are intermediates between ordinary geometric convexity and pseudoconvexity. Their importance was first manifested in the pioneering work of André Martineau from about forty years ago. Since then a large number of new related results have been obtained by many different mathematicians. The present book puts the modern theory of complex linear convexity on a solid footing, and gives a thorough and up-to-date survey of its current status. Applications include the Fantappié transformation of analytic functionals, integral representation formulas, polynomial interpolation, and solutions to linear partial differential equations