Mathematics of Financial Markets

This work is aimed at an audience with asound mathematical background wishing to leam about the rapidly expanding field of mathematical finance. Its content is suitable particularly for graduate students in mathematics who have a background in measure theory and prob ability. The emphasis throughout...

Full description

Bibliographic Details
Main Authors: Elliott, Robert J., Kopp, P. Ekkehard (Author)
Format: eBook
Language:English
Published: New York, NY Springer New York 1999, 1999
Edition:1st ed. 1999
Series:Springer Finance Textbooks
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 02992nmm a2200337 u 4500
001 EB000632467
003 EBX01000000000000000485549
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9781475771466 
100 1 |a Elliott, Robert J. 
245 0 0 |a Mathematics of Financial Markets  |h Elektronische Ressource  |c by Robert J Elliott, P. Ekkehard Kopp 
250 |a 1st ed. 1999 
260 |a New York, NY  |b Springer New York  |c 1999, 1999 
300 |a XI, 292 p  |b online resource 
505 0 |a 1 Pricing by Arbitrage -- 2 Martingale Measures -- 3 The Fundamental Theorem of Asset Pricing -- 4 Complete Markets and Martingale Representation -- 5 Stopping Times and American Options -- 6 A Review of Continuous-Time Stochastic Calculus -- 7 European Options in Continuous Time -- 8 The American Option -- 9 Bonds and Term Structure -- 10 Consumption-Investment Strategies -- References 
653 |a Mathematics in Business, Economics and Finance 
653 |a Statistics  
653 |a Probability Theory 
653 |a Social sciences / Mathematics 
653 |a Statistics 
653 |a Probabilities 
700 1 |a Kopp, P. Ekkehard  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Springer Finance Textbooks 
028 5 0 |a 10.1007/978-1-4757-7146-6 
856 4 0 |u https://doi.org/10.1007/978-1-4757-7146-6?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 519 
520 |a This work is aimed at an audience with asound mathematical background wishing to leam about the rapidly expanding field of mathematical finance. Its content is suitable particularly for graduate students in mathematics who have a background in measure theory and prob ability. The emphasis throughout is on developing the mathematical concepts re­ quired for the theory within the context of their application. No attempt is made to cover the bewildering variety of novel (or 'exotic') financial instru­ ments that now appear on the derivatives markets; the focus throughout remains on a rigorous development of the more basic options that lie at the heart of the remarkable range of current applications of martingale theory to financial markets. The first five chapters present the theory in a discrete-time framework. Stochastic calculus is not required, and this material should be accessible to anyone familiar with elementary probability theory and linear algebra. The basic idea of pricing by arbitrage (or, rather, by nonarbitrage) is presented in Chapter 1. The unique price for a European option in a single­ period binomial model is given and then extended to multi-period binomial models. Chapter 2 intro duces the idea of a martingale measure for price pro­ cesses. Following a discussion of the use of self-financing trading strategies to hedge against trading risk, it is shown how options can be priced using an equivalent measure for which the discounted price process is a mar­ tingale