Methods in Chemical Ecology Volume 2 Bioassay Methods

Identification of chemicals that affect the naturally occurring interactions be­ tween organisms requires sophisticated chemical techniques, such as those docu­ mented in volume 1, in combination with effective bioassays. Without an effective bioassay, the identification becomes akin to looking for...

Full description

Bibliographic Details
Other Authors: Haynes, Kenneth F. (Editor), Millar, Jocelyn G. (Editor)
Format: eBook
Language:English
Published: New York, NY Springer US 1998, 1998
Edition:1st ed. 1998
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 04741nmm a2200325 u 4500
001 EB000626063
003 EBX01000000000000000479145
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9781461554110 
100 1 |a Haynes, Kenneth F.  |e [editor] 
245 0 0 |a Methods in Chemical Ecology Volume 2  |h Elektronische Ressource  |b Bioassay Methods  |c edited by Kenneth F. Haynes, Jocelyn G. Millar 
250 |a 1st ed. 1998 
260 |a New York, NY  |b Springer US  |c 1998, 1998 
300 |a XX, 406 p  |b online resource 
505 0 |a 1. Bioassays with marine microorganisms -- 1.1. Chemical ecology of marine microorganisms -- 1.2. Ecological relevance of bioassays -- 1.3. Antimicrobial assays -- 1.4. Behavioral assays -- 1.5. Summary and conclusions -- 1.6. Acknowledgments -- 1.7. References -- 2. Bioassays with marine and freshwater macroorganisms -- 2.1. Introduction -- 2.2. Foraging cues -- 2.3. Feeding cues -- 2.4. Consequences of consuming defensive metabolites -- 2.5. Toxin-mediated prey capture -- 2.6. Chemically mediated detection of and responses to predators -- 2.7. Intraspecific chemical communication -- 2.8. Chemically mediated homing behavior -- 2.9. Settlement cues -- 2.10. Allelopathy and antifouling -- 2.11. Chemical ecology within a broader environmental context -- 2.12. Conclusions -- 2.13. Acknowledgments -- 2.14. References -- 3. Bioassay methods for fungi and oomycetes -- 3.1. Introduction -- 3.2. Intraspecific interactions—reproduction -- 3.3. Intraspecific population interactions --  
505 0 |a 3.4. Interspecific interactions -- 3.5. Conclusions -- 3.6. Acknowledgments -- 3.7. References -- 4. Bioassays for allelopathy in terrestrial plant -- 4.1. Introduction -- 4.2. Case studies illustrating appropriate bioassays -- 4.3. Density-dependent phytotoxicity -- 4.4. Practical considerations -- 4.5. Acknowledgments -- 4.6. References -- 5. Bioassay methods with terrestrial invertebrates -- 5.1. Introduction -- 5.2. Behavioral bioassays for odors, pheromones, and other volatile compounds -- 5.3. Bioassays for contact oviposition stimulants—two case studies -- 5.4. Measurement of preference -- 5.5. Postingestive bioassays -- 5.6. Measurements in diet studies: growth rate, consumption rate, and efficiency of conversion of food to biomass -- 5.7. Alternative methods to separate preingestive and postingestive effects -- 5.8. Contact andvolatile toxicity -- 5.9. Conclusions -- 5.10. Acknowledgments -- 5.11. References -- 6. Bioassay methods for amphibians and reptiles --  
505 0 |a 6.1. Introduction -- 6.2. Amphibians -- 6.3. Reptiles -- 6.4. Conclusions -- 6.5. Acknowledgments -- 6.6. References -- 7. Bioassays for mammals and birds -- 7.1. Introduction -- 7.2. Chemical senses -- 7.3. Test paradigms -- 7.4. Experimental apparatus -- 7.5. Intraspecific behaviors -- 7.6. Interspecific behaviors -- 7.7. Case studies -- 7.8. Summary -- 7.9. Acknowledgments -- 7.10. References 
653 |a Environmental chemistry 
653 |a Environmental Chemistry 
653 |a Ecology  
653 |a Ecology 
700 1 |a Millar, Jocelyn G.  |e [editor] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
028 5 0 |a 10.1007/978-1-4615-5411-0 
856 4 0 |u https://doi.org/10.1007/978-1-4615-5411-0?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 577 
520 |a Identification of chemicals that affect the naturally occurring interactions be­ tween organisms requires sophisticated chemical techniques, such as those docu­ mented in volume 1, in combination with effective bioassays. Without an effective bioassay, the identification becomes akin to looking for a needle in a haystack, but without any idea of what a needle looks like. To a large extent serniochemical identifications must be driven by bioassays. The design of bioassays for use in chemical ecology is governed by the sometimes conflicting objectives of ecological relevance and the need for simplic­ ity. Bioassay design should be based on observations of the interactions between organisms in their natural context, a theme that appears throughout this volume. As a result, this volume is as much about ecology and behavior as it is about specific methods. It is impossible to design a relevant bioassay, whether it is simple or complex, without understanding at least the fundamentals of how chemical cues or signals mediate the interaction in nature. Thus, the development of bioassay methods must be driven by an understanding of ecology and a knowledge of the natural history of the organisms under study. Given such an understanding, it is often possible to design assays that are both ecologically relevant and easy to perform