Foundations of Image Understanding

Computer systems that analyze images are critical to a wide variety of applications such as visual inspections systems for various manufacturing processes, remote sensing of the environment from space-borne imaging platforms, and automatic diagnosis from X-rays and other medical imaging sources. Pro...

Full description

Bibliographic Details
Other Authors: Davis, Larry S. (Editor)
Format: eBook
Language:English
Published: New York, NY Springer US 2001, 2001
Edition:1st ed. 2001
Series:The Springer International Series in Engineering and Computer Science
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
Table of Contents:
  • 1 Summation
  • 1. Beginnings
  • 2. Bibliographies, books, surveys, and position papers
  • 3. Geometry
  • 4. Texture analysis, segmentation, and feature detection
  • 5. Other topics
  • 2 Digital Geometry — The Birth of a New Discipline
  • 1. Introduction
  • 2. Three classic papers by A. Rosenfeld and J. L. Pfaltz
  • 3. Traditional digital geometry
  • 4. Digitized Euclidean geometry
  • 5. Approximation of curves
  • 6. Approximation of surfaces
  • 7. Conclusions
  • 3 Digital Topology
  • 1. Introduction
  • 2. The discrete Jordan curve theorem
  • 3. Good pairs of adjacency relations
  • 4. Simple points
  • 5. Adjacency trees; boundary and border following algorithms
  • 6. Concluding remarks
  • 4 Fuzzy Mathematics
  • 1. Introduction
  • 2. Geometry
  • 3. Digital topology
  • 4. Graph theory
  • 5. Algebra
  • 5 Picture Languages
  • 1. Introduction
  • 2. Formal languages for pictorial pattern recognition
  • 3. 2D and 3D array grammars and array languages
  • 7. Summary
  • 14 Statistics Explains Geometrical Optical Illusions
  • 1. Introduction
  • 2. Errors in gray values
  • 3. Errors in line elements
  • 4. Errors in motion
  • 5. The inherent problem
  • 6. Discussion and summary
  • Appendix: Expected value of the least squares solution
  • 15 Optics for OmniStereo Imaging
  • 1. Introduction
  • 2. Circular projections
  • 3. OmniStereo mosaicking
  • 4. Curves for OmniStereo optics
  • 5. Spiral mirror, I
  • 6. Spiral mirror, II
  • 7. A spiral lens
  • 8. Concluding remarks
  • 16 Volumetric Scene Reconstruction from Multiple Views
  • 1. Introduction
  • 2. Volumetric representations
  • 3. Shape from silhouettes
  • 4. Shape from photo-consistency
  • 5. Voxel visibility using plane-sweep
  • 6. Voxel coloring
  • 7. Space carving
  • 8. Better reconstructions
  • 9. Extensions
  • 10. Conclusions
  • 4. Parallel grammars and parallel acceptors
  • 5. Web grammars, web automata, and cellular graph automata
  • 6. An application of array grammars
  • 7. Further topics
  • 8. List of Rosenfeld’s works on picture languages
  • 6 Parallel Image Processing
  • 1. Introduction
  • 2. Parallel computers for image processing
  • 3. Pixel-level processing
  • 4. Region-level processing
  • 5. Concluding remarks
  • 7 Object Representations
  • 1. Introduction
  • 2. Unit-size cells
  • 3. Blocks
  • 4. Arbitrary objects
  • 5. Hierarchical representations
  • 6. Boundary-based representations
  • 7. Concluding remarks
  • 8 Texture Classification and Segmentation
  • 1. Tribulations
  • 2. Triumphs
  • 3. Tributes
  • 9 Edge Measures Using Similarity Regions
  • 1. Introduction
  • 2. Related work
  • 3. Edges and similarity regions
  • 4. SRS-based edge measures
  • 5. Preprocessing using clustering
  • 6. Discussionand conclusions
  • 10 Relaxation Labeling: 25 Years and Still Iterating
  • 1. Introduction
  • 2. Historical remarks
  • 3. Tangent maps and compatibilities for curve inference
  • 4. Subtree isomorphism for shape matching
  • 5. Polymatrix games
  • 6. Summary and conclusions
  • 11 From a Robust Hierarchy to a Hierarchy of Robustness
  • 1. Inside image pyramids
  • 2. Stochastic pyramids and least median of squares
  • 3. The vision perspective of robustness
  • 4. Instead of conclusions
  • 12 A Pyramid Framework for Real-Time Computer Vision
  • 1. Introduction
  • 2. From human to computer vision
  • 3. Pyramid transforms
  • 4. Frame-to-frame alignment
  • 5. Space/time filters
  • 6. Multi-resolution fusion
  • 7. Displacement fields
  • 8. Attribute maps
  • 9. Vision front-end system
  • 10. Next steps
  • 13 On the Computational Modeling of Human Vision
  • 1. Introduction
  • 2. One-stage theories
  • 3. Multiple processes: Perception of lightness
  • 4. Multiple representations: Visual segregation
  • 5. Multiple sources of information: Perception of transparency
  • 6. Impenetrability