Gas-Turbine Regenerators

Regenerative gas turbines are attractive alternatives to diesel engines and spark­ ignition engines for automobiles and to diesel engines and combined-cycle en­ gines for power generation. Theory indicates regenerative gas turbines should achieve higher thermal efficiencies than those of diesel engi...

Full description

Bibliographic Details
Main Authors: Beck, Douglas, Wilson, David G. (Author)
Format: eBook
Language:English
Published: New York, NY Springer US 1996, 1996
Edition:1st ed. 1996
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 03579nmm a2200337 u 4500
001 EB000621406
003 EBX01000000000000000474488
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9781461312093 
100 1 |a Beck, Douglas 
245 0 0 |a Gas-Turbine Regenerators  |h Elektronische Ressource  |c by Douglas Beck, David G. Wilson 
250 |a 1st ed. 1996 
260 |a New York, NY  |b Springer US  |c 1996, 1996 
300 |a XXVI, 250 p  |b online resource 
505 0 |a 1 Introduction -- 1.1 Regenerators vs. Recuperators -- 1.2 Heat Transfer -- 1.3 Leakage -- 1.4 Pressure Drops -- 1.5 Power Consumption -- 1.6 Summary -- 2 Background -- 2.1 History of Regenerators -- 2.2 Analysis and Design -- 2.3 State of the Art -- 3 Gas-Turbine Cycles -- 3.1 Performance -- 3.2 Governing Equations -- 3.3 Simple Cycle -- 3.4 Regenerative Cycle -- 3.5 Intercooled Regenerative (ICR) Cycle -- 3.6 ICR Cycle with Reheat -- 3.7 Summary -- 4 Regenerator Designs -- 4.1 Significance of Heat Exchangers in Gas Turbines -- 4.2 Alternative Regenerator Designs -- 4.3 Gas-Turbine Cycles with Heat Exchangers -- 4.4 Future Directions -- 5 Design Procedures and Examples -- 5.1 Direct Regenerator Design -- 5.2 Optimal Regenerator Design -- 5.3 Method of Kays and London -- 5.4 Summary -- 6 Regenerator Performance -- 6.1 Heat Transfer -- 6.2 Summary -- 6.3 Seal Leakage -- 6.4 Pressure Drops -- A Performance of the Ericsson Cycle 
653 |a Algebraic Geometry 
653 |a Classical Mechanics 
653 |a Mechanical Engineering 
653 |a Civil engineering 
653 |a Civil Engineering 
653 |a Algebraic geometry 
653 |a Mechanical engineering 
653 |a Mechanics 
700 1 |a Wilson, David G.  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
856 4 0 |u https://doi.org/10.1007/978-1-4613-1209-3?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 621 
520 |a Regenerative gas turbines are attractive alternatives to diesel engines and spark­ ignition engines for automobiles and to diesel engines and combined-cycle en­ gines for power generation. Theory indicates regenerative gas turbines should achieve higher thermal efficiencies than those of diesel engines and combined­ cycle engines. Further, regenerative gas turbines are potentially lower in cost, require less maintenance, require less space, and pollute less than competitive systems. Regenerators can be used for exhaust-gas heat exchange or for intercooling in gas-turbine systems. As an exhaust-gas heat exchanger, a regenerator recovers heat from the exhaust and uses it to preheat the compressed air before the compressed air enters the combustor. Preheating of the compressed air permits a small heat input to the combustor for a given power output of the engine. As an intercooler, a regenerator cools the gas between compressor stages. Less work is required to compress cool gas than is required to compress warm gas. Therefore, a regenerator intercooler can reduce the required work input to the compressor. Thus, regenerators can be used to increase the thermal efficiencies and power outputs of gas turbines. the backbones of high-performance re­ High-performance regenerators are generative gas turbines. In the past, lack of understanding of regenerator per­ formance has led to sub-optimal engine designs. Now this book gives com­ prehensive regenerator information. With this book, the designer can design regenerators that will yield gas turbines with maximum thermal efficiencies