Microcomputers and Laboratory Instrumentation

The invention of the microcomputer in the mid-1970s and its subsequent low-cost proliferation has opened up a new world for the laboratory scientist. Tedious data collection can now be automated relatively cheaply and with an enormous increase in reliability. New techniques of measurement are access...

Full description

Bibliographic Details
Main Author: Malcolme-Lawes, David J.
Format: eBook
Language:English
Published: New York, NY Springer US 1988, 1988
Edition:1st ed. 1988
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 04733nmm a2200313 u 4500
001 EB000621317
003 EBX01000000000000000474399
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9781461310112 
100 1 |a Malcolme-Lawes, David J. 
245 0 0 |a Microcomputers and Laboratory Instrumentation  |h Elektronische Ressource  |c by David J. Malcolme-Lawes 
250 |a 1st ed. 1988 
260 |a New York, NY  |b Springer US  |c 1988, 1988 
300 |a 284 p  |b online resource 
505 0 |a 1 Introduction -- 1.1 Laboratory instrumentation and microcomputers -- 1.2 Measurement systems -- 1.3 Electronic black boxes -- 1.4 A practical footnote -- 2 The Basics of Laboratory Signals -- 2.1 Transducers -- 2.2 Measurement signals -- 2.3 The transducer connection -- 2.4 Noise and interference -- 2.5 Minimising interference -- 2.6 Signal-to-noise ratio -- 2.7 Control signals -- 3 The Elements of Analog Signal Handling -- 3.1 Op-amps -- 3.2 Feedback systems -- 3.3 Basic amplifier configurations -- 3.4 Bandwidth and slew rate -- 3.5 Practical dc signal circuits -- 3.6 Ac signal circuits -- 3.7 Integrators -- 3.8 Differentiators -- 3.9 Pulse amplifiers -- 3.10 Filters -- 3.11 High voltage and high power control circuits -- 4 The Elements of Digital Signal Handling -- 4.1 Logic gates -- 4.2 TTL families -- 4.3 C-MOS families -- 4.4 C-MOS and TTL together -- 4.5 MSI circuits -- 4.6 Generating logic levels -- 4.7 Analog/digital interconversion -- 4.8 Serial digital signals --  
505 0 |a 4.10 Some useful logic controlled circuits -- 5 The Modern Microcomputer -- 5.1 Bits and bytes -- 5.2 Microcomputer elements -- 5.3 The video display -- 5.4 Disks -- 5.5 Peripherals -- 5.6 The micro families -- 5.7 The programming language -- 5.8 The operating system -- 5.9 Byte transfers -- 5.10 External byte transfers -- 5.11 Interrupts and interrupt flags -- 6 The PC Family -- 6.1 The elements of a PC -- 6.2 Video display adaptors -- 6.3 Interface cards - a user port adaptor -- 6.4 The disk operating system -- 6.5 The DOS interrupts -- 6.6 Other environments -- 7 Interfacing Microcomputers with Laboratory Signals -- 7.1 Basic instrumental interface types -- 7.2 Multiplexing -- 7.3 Multiple byte interfaces -- 7.4 Interface control -- 7.5 Handshaking -- 7.6 Synchronous byte transfers -- 7.7 Dynamic interfaces -- 8 Parallel Standard Interface Systems -- 8.1 Introduction -- 8.2 The Centronics standard -- 8.3 The IEEE 488 standard -- 8.4 Examples of GPIB adaptor cards for the PC --  
505 0 |a 9 The Serial Standard Interface and Communication System -- 9.1 Serial standards -- 9.2 Serial data transfers -- 9.3 The RS232C connection -- 9.4 Data transfers -- 9.5 Connecting RS232C systems -- 9.6 The PC serial port -- 9.7 A microcomputer/RS232 adaptor -- 9.8 Communication using modems -- 9.9 File transfer protocols -- 10 System Design and Case Study -- 10.1 An approach to system design -- 10.2 Case study: A variable wavelength colorimeter -- Appendices -- Appendix 1: The ASCII code -- Appendix 2: Binary and BCD tables -- Appendix 3: Decimal-hexadecimal conversion tables -- Device Index 
653 |a Analytical chemistry 
653 |a Analytical Chemistry 
653 |a Biochemistry 
653 |a Biotechnology 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
028 5 0 |a 10.1007/978-1-4613-1011-2 
856 4 0 |u https://doi.org/10.1007/978-1-4613-1011-2?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 572 
520 |a The invention of the microcomputer in the mid-1970s and its subsequent low-cost proliferation has opened up a new world for the laboratory scientist. Tedious data collection can now be automated relatively cheaply and with an enormous increase in reliability. New techniques of measurement are accessible with the "intelligent" instrumentation made possible by these programmable devices, and the ease of use of even standard measurement techniques may be improved by the data processing capabilities of the humblest micro. The latest items of commercial laboratory instrumentation are invariably "computer controlled", although this is more likely to mean that a microprocessor is involved than that a versatile microcomputer is provided along with the instrument. It is clear that all scientists of the future will need some knowledge of computers, if only to aid them in mastering the button pushing associated with gleaming new instruments. However, to be able to exploit this newly accessible computing power to the full the practising laboratory scientist must gain sufficient understanding to utilise the communication channels between apparatus on the laboratory bench and program within the computer