Weakly Connected Neural Networks

This book is devoted to an analysis of general weakly connected neural networks (WCNNs) that can be written in the form (0.1) m Here, each Xi E IR is a vector that summarizes all physiological attributes of the ith neuron, n is the number of neurons, Ii describes the dynam­ ics of the ith neuron, an...

Full description

Bibliographic Details
Main Authors: Hoppensteadt, Frank C., Izhikevich, Eugene M. (Author)
Format: eBook
Language:English
Published: New York, NY Springer New York 1997, 1997
Edition:1st ed. 1997
Series:Applied Mathematical Sciences
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 02493nmm a2200337 u 4500
001 EB000618797
003 EBX01000000000000000471879
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9781461218289 
100 1 |a Hoppensteadt, Frank C. 
245 0 0 |a Weakly Connected Neural Networks  |h Elektronische Ressource  |c by Frank C. Hoppensteadt, Eugene M. Izhikevich 
250 |a 1st ed. 1997 
260 |a New York, NY  |b Springer New York  |c 1997, 1997 
300 |a XVI, 402 p  |b online resource 
505 0 |a 1 Introduction -- 2 Bifurcations in Neuron Dynamics -- 3 Neural Networks -- 4 Introduction to Canonical Models -- 5 Local Analysis of WCNNs -- 6 Local Analysis of Singularly Perturbed WCNNs -- 7 Local Analysis of Weakly Connected Maps -- 8 Saddle-Node on a Limit Cycle -- 9 Weakly Connected Oscillators -- 10 Multiple Andronov-Hopf Bifurcation -- 11 Multiple Cusp Bifurcation -- 12 Quasi-Static Bifurcations -- 13 Synaptic Organizations of the Brain -- References 
653 |a Neuroscience 
653 |a Neurosciences 
653 |a Mathematical and Computational Biology 
653 |a Mathematical analysis 
653 |a Biomathematics 
653 |a Analysis 
700 1 |a Izhikevich, Eugene M.  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Applied Mathematical Sciences 
028 5 0 |a 10.1007/978-1-4612-1828-9 
856 4 0 |u https://doi.org/10.1007/978-1-4612-1828-9?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 515 
520 |a This book is devoted to an analysis of general weakly connected neural networks (WCNNs) that can be written in the form (0.1) m Here, each Xi E IR is a vector that summarizes all physiological attributes of the ith neuron, n is the number of neurons, Ii describes the dynam­ ics of the ith neuron, and gi describes the interactions between neurons. The small parameter € indicates the strength of connections between the neurons. Weakly connected systems have attracted much attention since the sec­ ond half of seventeenth century, when Christian Huygens noticed that a pair of pendulum clocks synchronize when they are attached to a light­ weight beam instead of a wall. The pair of clocks is among the first weakly connected systems to have been studied. Systems of the form (0.1) arise in formal perturbation theories developed by Poincare, Liapunov and Malkin, and in averaging theories developed by Bogoliubov and Mitropolsky