Lyapunov-Based Control of Mechanical Systems

The design of nonlinear controllers for mechanical systems has been an ex­ tremely active area of research in the last two decades. From a theoretical point of view, this attention can be attributed to their interesting dynamic behavior, which makes them suitable benchmarks for nonlinear control the...

Full description

Bibliographic Details
Main Authors: Queiroz, Marcio S. de, Dawson, Darren M. (Author), Nagarkatti, Siddharth P. (Author), Zhang, Fumin (Author)
Format: eBook
Language:English
Published: Boston, MA Birkhäuser 2000, 2000
Edition:1st ed. 2000
Series:Control Engineering
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 04457nmm a2200421 u 4500
001 EB000618570
003 EBX01000000000000000471652
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9781461213529 
100 1 |a Queiroz, Marcio S. de 
245 0 0 |a Lyapunov-Based Control of Mechanical Systems  |h Elektronische Ressource  |c by Marcio S. de Queiroz, Darren M. Dawson, Siddharth P. Nagarkatti, Fumin Zhang 
250 |a 1st ed. 2000 
260 |a Boston, MA  |b Birkhäuser  |c 2000, 2000 
300 |a XIII, 316 p  |b online resource 
505 0 |a 1 Introduction -- 1.1 Lyapunov-Based Control -- 1.2 Rigid Mechanical Systems -- 1.3 Flexible Mechanical Systems -- 1.4 Real-Time Control Implementation -- 2 Control Techniques for Friction Compensation -- 2.1 Introduction -- 2.2 Reduced-Order Friction Model -- 2.3 Control Designs for Reduced-Order Model -- 2.4 Full-Order Friction Model -- 2.5 Control Designs for Full-Order Model -- 2.6 Notes -- 3 Full-State Feedback Tracking Controllers -- 3.1 Introduction -- 3.2 System Model -- 3.3 Problem Statement -- 3.4 Standard Adaptive Control -- 3.5 Desired Trajectory-Based Adaptive Control -- 3.6 Control/Adaptation Law Modularity -- 3.7 Notes -- 4 Output Feedback Tracking Controllers -- 4.1 Introduction -- 4.2 Problem Statement -- 4.3 Model-Based Observer/Control -- 4.4 Linear Filter-Based Adaptive Control -- 4.5 Nonlinear Filter-Based Adaptive Control -- 4.6 Notes -- 5 Strings and Cables -- 5.1 Introduction -- 5.2 Actuator-String System -- 5.3 Cable System -- 5.4 Notes -- 6 Cantilevered Beams -- 6.1 Introduction -- 6.2 Euler-Bernoulli Beam -- 6.3 Timoshenko Beam -- 6.4 Notes -- 7 Boundary Control Applications -- 7.1 Introduction -- 7.2 Axially Moving String System -- 7.3 Flexible Link Robot Arm -- 7.4 Flexible Rotor System -- 7.5 Notes -- Appendices -- A Mathematical Background -- References -- B Bounds for General Rigid Mechanical System -- References -- C Bounds for the Puma Robot -- References -- D Control Programs -- D.1 DCAL Controller -- D.2 Flexible Rotor 
653 |a Mechanics, Applied 
653 |a Control, Robotics, Automation 
653 |a Control theory 
653 |a Systems Theory, Control 
653 |a Multibody Systems and Mechanical Vibrations 
653 |a System theory 
653 |a Vibration 
653 |a Control engineering 
653 |a Robotics 
653 |a Multibody systems 
653 |a Automation 
700 1 |a Dawson, Darren M.  |e [author] 
700 1 |a Nagarkatti, Siddharth P.  |e [author] 
700 1 |a Zhang, Fumin  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Control Engineering 
028 5 0 |a 10.1007/978-1-4612-1352-9 
856 4 0 |u https://doi.org/10.1007/978-1-4612-1352-9?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 620.3 
520 |a The design of nonlinear controllers for mechanical systems has been an ex­ tremely active area of research in the last two decades. From a theoretical point of view, this attention can be attributed to their interesting dynamic behavior, which makes them suitable benchmarks for nonlinear control the­ oreticians. On the other hand, recent technological advances have produced many real-world engineering applications that require the automatic con­ trol of mechanical systems. the mechanism for de­ Often, Lyapunov-based techniques are utilized as veloping different nonlinear control structures for mechanical systems. The allure of the Lyapunov-based framework for mechanical system control de­ sign can most likely be assigned to the fact that Lyapunov function candi­ dates can often be crafted from physical insight into the mechanics of the system. That is, despite the nonlinearities, couplings, and/or the flexible effects associated with the system, Lyapunov-based techniques can often be used to analyze the stability of the closed-loop system by using an energy­ like function as the Lyapunov function candidate. In practice, the design procedure often tends to be an iterative process that results in the death of many trees. That is, the controller and energy-like function are often constructed in concert to foster an advantageous stability property and/or robustness property. Fortunately, over the last 15 years, many system the­ ory and control researchers have labored in this area to produce various design tools that can be applied in a variety of situations