Linear Processes in Function Spaces Theory and Applications

The main subject of this book is the estimation and forecasting of continuous time processes. It leads to a development of the theory of linear processes in function spaces. The necessary mathematical tools are presented in Chapters 1 and 2. Chapters 3 to 6 deal with autoregressive processes in Hilb...

Full description

Bibliographic Details
Main Author: Bosq, Denis
Format: eBook
Language:English
Published: New York, NY Springer New York 2000, 2000
Edition:1st ed. 2000
Series:Lecture Notes in Statistics
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
Table of Contents:
  • 5.5. Estimation of the autoregression order
  • Notes
  • 6. Autoregressive processes in Banach spaces
  • 1. Strong autoregressive processes in Banach spaces
  • 2. Autoregressive representation of some real continuous-time processes
  • 3. Limit theorems
  • 4. Weak Banach autoregressive processes
  • 5. Estimation of autocovariance
  • 6. The case of C[0, 1]
  • 7. Some applications to real continuous-time processes
  • Notes
  • 7. General linear processes in function spaces
  • 7.1. Existence and first properties of linear processes
  • 7.2. Invertibility of linear processes
  • 7.3. Markovian representations of LPH: applications
  • 7.4. Limit theorems for LPB and LPH
  • 7.5. * Derivation of invertibility
  • Notes
  • 8. Estimation of autocorrelation operator and prediction
  • 8.1. Estimation of p if H is finite dimensional
  • 8.2. Estimation of p in a special case
  • 8.3. The general situation
  • 8.4. Estimation of autocorrelation operator in C[0,1]
  • 8.5. Statistical prediction
  • 2.2. Convergence of B-random variables
  • 2.3. Limit theorems for i.i.d. sequences of B-random variables
  • 2.4. Sequences of dependent random variables in Banach spaces
  • 2.5. * Derivation of exponential bounds
  • Notes
  • 3. Autoregressive Hilbertian processes of order one
  • 3.1. Stationarity and innovation in Hilbert spaces
  • 3.2. The ARH(1) model
  • 3.3. Basic properties of ARH(1) processes
  • 3.4. ARH(1) processes with symmetric compact autocorrelation operator
  • 3.5. Limit theorems for ARH(1) processes
  • Notes
  • 4. Estimation of autocovariance operators for ARH(1) processes
  • 4.1. Estimation of the covariance operator
  • 4.2. Estimation of the eigenelements of C
  • 4.3. Estimation of the cross-covariance operators
  • 4.4. Limits in distribution
  • Notes
  • 5. Autoregressive Hilbertian processes of order p
  • 5.1. The ARH(p) model
  • 5.2. Second order moments of ARH(p)
  • 5.3. Limit theorems for ARH(p)processes
  • 5.4. Estimation of autocovariance of an ARH(p)
  • 8.6. * Derivation of strong consistency
  • Notes
  • 9. Implementation of functional autoregressive predictors and numerical applications
  • 9.1. Functional data
  • 9.2. Choosing and estimating a model
  • 9.3. Statistical methods of prediction
  • 9.4. Some numerical applications
  • Notes
  • Figures
  • 1. Measure and probability
  • 2. Random variables
  • 3. Function spaces
  • 4. Basic function spaces
  • 5. Conditional expectation
  • 6. Stochastic integral
  • References
  • Synopsis
  • 1. The object of study
  • 2. Finite-dimensional linear processes
  • 3. Random variables in function spaces
  • 4. Limit theorems in function spaces
  • 5. Autoregressive processes in Hilbert spaces
  • 6. Estimation of covariance operators
  • 7. Autoregressive processes in Banach spaces and representations of continuous-time processes
  • 8. Linear processes in Hilbert spaces and Banach spaces
  • 9. Estimation of autocorrelation operator and forecasting
  • 10. Applications
  • 1. Stochastic processes and random variables in function spaces
  • 1.1. Stochastic processes
  • 1.2. Random functions
  • 1.3. Expectation and conditional expectation in Banach spaces
  • 1.4. Covariance operators and characteristic functionals in Banach spaces
  • 1.5. Random variables and operators in Hilbert spaces
  • 1.6. Linear prediction in Hilbert spaces
  • Notes
  • 2. Sequences of random variables in Banach spaces
  • 2.1. Stochastic processes as sequences of B-valued random variables