Fundamentals of Real Analysis

Integration theory and general topology form the core of this textbook for a first-year graduate course in real analysis. After the foundational material in the first chapter (construction of the reals, cardinal and ordinal numbers, Zorn's lemma and transfinite induction), measure, integral and...

Full description

Bibliographic Details
Main Author: Berberian, Sterling K.
Format: eBook
Language:English
Published: New York, NY Springer New York 1999, 1999
Edition:1st ed. 1999
Series:Universitext
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 04941nmm a2200313 u 4500
001 EB000618194
003 EBX01000000000000000471276
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9781461205494 
100 1 |a Berberian, Sterling K. 
245 0 0 |a Fundamentals of Real Analysis  |h Elektronische Ressource  |c by Sterling K. Berberian 
250 |a 1st ed. 1999 
260 |a New York, NY  |b Springer New York  |c 1999, 1999 
300 |a XI, 479 p. 98 illus  |b online resource 
505 0 |a §5.13. Lebesgue’s criterion for Riemann-integrability -- 6 Function Spaces -- §6.1. Compact metric spaces -- §6.2. Uniform convergence, iterated limits theorem.-§6.3. Complete metric spaces -- §6.4. L1 -- §6.5. Real and complex measures -- §6.6. L? -- §6.7. LP(1 < p < ?) -- §6.8.C(X) -- §6.9. Stone-Weierstrass approximation theorem -- 7 Product Measure -- §7.1. Extension of measures -- §7.2. Product measures -- §7.3. Iterated integrals, Fubini—Tonelli theorem for finite measures -- §7.4. Fubini—Tonelli theorem for o--finite measures -- 8 The Differential Equation y’ =f (xy) -- §8.1. Equicontinuity, Ascoli’s theorem -- §8.2. Picard’s existence theorem for y’ =f (xy) -- §8.3. Peano’s existence theorem for y’ =f (xy) -- 9 Topics in Measure and Integration -- §9.1. Jordan-Hahn decomposition of a signed measure -- §9.2. Radon-Nikodym theorem -- §9.3. Lebesgue decomposition of measures -- §9.4. Convolution in L1(?) --  
505 0 |a 1 Foundations -- §1.1. Logic, set notations -- §1.2. Relations -- §1.3. Functions (mappings) -- §1.4. Product sets, axiom of choice -- §1.5. Inverse functions -- §1.6. Equivalence relations, partitions, quotient sets -- §1.7. Order relations -- §1.8. Real numbers -- §1.9. Finite and infinite sets -- §1.10. Countable and uncountable sets -- §1.11. Zorn’s lemma, the well-ordering theorem -- §1.12. Cardinality -- §1.13. Cardinal arithmetic, the continuum hypothesis -- §1.14. Ordinality -- §1.15. Extended real numbers -- §1.16. limsup, liminf, convergence in ? -- 2 Lebesgue Measure -- §2.1. Lebesgue outer measure on ? -- §2.2. Measurable sets -- §2.3. Cantor set: an uncountable set of measure zero -- §2.4. Borel sets, regularity -- §2.5. A nonmeasurable set -- §2.6. Abstract measure spaces -- 3 Topology -- §3.1. Metric spaces: examples -- §3.2. Convergence, closed sets and open sets in metric spaces -- §3.3. Topological spaces -- §3.4. Continuity --  
505 0 |a §9.5. Integral operators (with continuous kernel function) -- Index of Notations 
505 0 |a §3.5. Limit of a function -- 4 Lebesgue Integral -- §4.1. Measurable functions -- §4.2. a.e. -- §4.3. Integrable simple functions -- §4.4. Integrable functions -- §4.5. Monotone convergence theorem, Fatou’s lemma -- §4.6. Monotone classes -- §4.7. Indefinite integrals -- §4.8. Finite signed measures -- 5 Differentiation -- §5.1. Bounded variation, absolute continuity -- §5.2. Lebesgue’s representation of AC functions -- §5.3. limsup, liminf of functions; Dini derivates -- §5.4. Criteria for monotonicity -- §5.5. Semicontinuity -- §5.6. Semicontinuous approximations of integrable functions -- §5.7. F. Riesz’s “Rising sun lemma” -- §5.8. Growth estimates of a continuous increasing function -- §5.9. Indefinite integrals are a.e. primitives -- §5.10. Lebesgue’s “Fundamental theorem of calculus” -- §5.11. Measurability of derivates of a monotone function -- §5.12. Lebesgue decomposition of a function of bounded variation --  
653 |a Functions of real variables 
653 |a Real Functions 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Universitext 
028 5 0 |a 10.1007/978-1-4612-0549-4 
856 4 0 |u https://doi.org/10.1007/978-1-4612-0549-4?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 515.8 
520 |a Integration theory and general topology form the core of this textbook for a first-year graduate course in real analysis. After the foundational material in the first chapter (construction of the reals, cardinal and ordinal numbers, Zorn's lemma and transfinite induction), measure, integral and topology are introduced and developed as recurrent themes of increasing depth. The treatment of integration theory is quite complete (including the convergence theorems, product measure, absolute continuity, the Radon-Nikodym theorem, and Lebesgue's theory of differentiation and primitive functions), while topology, predominantly metric, plays a supporting role. In the later chapters, integral and topology coalesce in topics such as function spaces, the Riesz representation theorem, existence theorems for an ordinary differential equation, and integral operators with continuous kernel function. In particular, the material on function spaces lays a firm foundation for the study of functional analysis