Nonlinear and Robust Control of PDE Systems Methods and Applications to Transport-Reaction Processes

The interest in control of nonlinear partial differential equation (PDE) sys­ tems has been triggered by the need to achieve tight distributed control of transport-reaction processes that exhibit highly nonlinear behavior and strong spatial variations. Drawing from recent advances in dynamics of PDE...

Full description

Bibliographic Details
Main Author: Christofides, Panagiotis D.
Format: eBook
Language:English
Published: Boston, MA Birkhäuser 2001, 2001
Edition:1st ed. 2001
Series:Systems & Control: Foundations & Applications
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 05077nmm a2200385 u 4500
001 EB000618020
003 EBX01000000000000001348339
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9781461201854 
100 1 |a Christofides, Panagiotis D. 
245 0 0 |a Nonlinear and Robust Control of PDE Systems  |h Elektronische Ressource  |b Methods and Applications to Transport-Reaction Processes  |c by Panagiotis D. Christofides 
250 |a 1st ed. 2001 
260 |a Boston, MA  |b Birkhäuser  |c 2001, 2001 
300 |a XVII, 251 p  |b online resource 
505 0 |a 1 Introduction -- 1.1 Motivation -- 1.2 Examples of Transport-Reaction Processes -- 1.3 Background on Control of PDE Systems -- 1.4 Objectives and Organization of the Book -- 2 Feedback Control of Hyperbolic PDE Systems -- 2.1 Introduction -- 2.2 First-Order Hyperbolic PDE Systems -- 2.3 Characteristic Index -- 2.4 State Feedback Control -- 2.5 Closed-Loop Stability -- 2.6 Output Feedback Control -- 2.7 Application to a Nonisothermal Plug-Flow Reactor -- 2.8 Conclusions -- 3 Robust Control of Hyperbolic PDE Systems -- 3.1 Introduction -- 3.2 Preliminaries -- 3.3 Uncertainty Decoupling -- 3.4 Robust Control: Uncertain Variables -- 3.5 Two-Time-Scale Hyperbolic PDE Systems -- 3.6 Robustness with Respect to Unmodeled Dynamics -- 3.7 Application to a Fixed-Bed Reactor -- 3.8 Conclusions -- 4 Feedback Control of Parabolic PDE Systems -- 4.1 Introduction -- 4.2 Preliminaries -- 4.3 Examples of Processes Modeled by Nonlinear Parabolic PDEs -- 4.4 Galerkin’s Method --  
505 0 |a 4.5 Accuracy of ODE System Obtained From Galerkin’s Method -- 4.6 Construction of ODE Systems of Desired Accuracy via AIMs -- 4.7 Nonlinear Output Feedback Control -- 4.8 Applications -- 4.9 Conclusions -- 5 Robust Control of Parabolic PDE Systems -- 5.1 Introduction -- 5.2 Preliminaries -- 5.3 Robust State Feedback Control of Parabolic PDE Systems -- 5.4 Robust Output Feedback Controller Synthesis -- 5.5 Application to a Catalytic Rod with Uncertainty -- 5.6 Conclusions -- 6 Nonlinear and Robust Control of Parabolic PDE Systems with Time-Dependent Spatial Domains -- 6.1 Introduction -- 6.2 Preliminaries -- 6.3 Nonlinear Model Reduction -- 6.4 Nonlinear Output Feedback Control -- 6.5 Application to a Catalytic Rod with Moving Boundary -- 6.6 Robust Control of Parabolic PDEs with Time-Dependent Spatial Domains -- 6.7 Application to a Catalytic Rod withMoving Boundary and Uncertainty -- 6.8 Conclusions -- 7 Case Studies --  
505 0 |a 7.1 Nonlinear Control of Rapid Thermal Chemical Vapor Deposition -- 7.2 Nonlinear Control of Czochralski Crystal Growth -- 7.3 Conclusions -- Appendix A: Proofs of Chapter 2 -- Appendix B: Proofs of Chapter 3 -- Appendix C: Proofs of Chapter 4 -- Appendix D: Proofs of Chapter 5 -- Appendix E: Proofs of Chapter 6 -- Appendix F: Karhunen-Loève Expansion -- References 
653 |a Engineering 
653 |a Control, Robotics, Automation 
653 |a Control theory 
653 |a Systems Theory, Control 
653 |a System theory 
653 |a Control engineering 
653 |a Robotics 
653 |a Technology and Engineering 
653 |a Automation 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Systems & Control: Foundations & Applications 
028 5 0 |a 10.1007/978-1-4612-0185-4 
856 4 0 |u https://doi.org/10.1007/978-1-4612-0185-4?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 003 
520 |a The interest in control of nonlinear partial differential equation (PDE) sys­ tems has been triggered by the need to achieve tight distributed control of transport-reaction processes that exhibit highly nonlinear behavior and strong spatial variations. Drawing from recent advances in dynamics of PDE systems and nonlinear control theory, control of nonlinear PDEs has evolved into a very active research area of systems and control. This book­ the first of its kind- presents general methods for the synthesis of nonlinear and robust feedback controllers for broad classes of nonlinear PDE sys­ tems and illustrates their applications to transport-reaction processes of industrial interest. Specifically, our attention focuses on quasi-linear hyperbolic and parabolic PDE systems for which the manipulated inputs and measured and controlled outputs are distributed in space and bounded. We use geometric and Lyapunov-based control techniques to synthesize nonlinear and robust controllers that use a finite number of measurement sensors and control actuators to achieve stabilization of the closed-loop system, output track­ ing, and attenuation of the effect of model uncertainty. The controllers are successfully applied to numerous convection-reaction and diffusion-reaction processes, including a rapid thermal chemical vapor deposition reactor and a Czochralski crystal growth process. The book includes comparisons of the proposed nonlinear and robust control methods with other approaches and discussions of practical implementation issues