Uncertainty Handling and Quality Assessment in Data Mining

The recent explosive growth of our ability to generate and store data has created a need for new, scalable and efficient, tools for data analysis. The main focus of the discipline of knowledge discovery in databases is to address this need. Knowledge discovery in databases is the fusion of many area...

Full description

Main Authors: Vazirgiannis, Michalis, Halkidi, Maria (Author), Gunopulos, Dimitrious (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: London Springer London 2003, 2003
Edition:1st ed. 2003
Series:Advanced Information and Knowledge Processing
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 02568nmm a2200385 u 4500
001 EB000616745
003 EBX01000000000000000469827
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9781447100317 
100 1 |a Vazirgiannis, Michalis 
245 0 0 |a Uncertainty Handling and Quality Assessment in Data Mining  |h Elektronische Ressource  |c by Michalis Vazirgiannis, Maria Halkidi, Dimitrious Gunopulos 
250 |a 1st ed. 2003 
260 |a London  |b Springer London  |c 2003, 2003 
300 |a IX, 226 p  |b online resource 
505 0 |a A Data Mining System Handling Uncertainty and Quality -- 5.1 Introduction -- 5.2 UMiner Developmen 
653 |a Management information systems 
653 |a Computer science 
653 |a Computers 
653 |a Data structures (Computer science) 
653 |a Data Structures and Information Theory 
653 |a Information Systems and Communication Service 
653 |a Management of Computing and Information Systems 
653 |a Data Structures 
700 1 |a Halkidi, Maria  |e [author] 
700 1 |a Gunopulos, Dimitrious  |e [author] 
710 2 |a SpringerLink (Online service) 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Advanced Information and Knowledge Processing 
856 |u https://doi.org/10.1007/978-1-4471-0031-7?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 005.73 
520 |a The recent explosive growth of our ability to generate and store data has created a need for new, scalable and efficient, tools for data analysis. The main focus of the discipline of knowledge discovery in databases is to address this need. Knowledge discovery in databases is the fusion of many areas that are concerned with different aspects of data handling and data analysis, including databases, machine learning, statistics, and algorithms. Each of these areas addresses a different part of the problem, and places different emphasis on different requirements. For example, database techniques are designed to efficiently handle relatively simple queries on large amounts of data stored in external (disk) storage. Machine learning techniques typically consider smaller data sets, and the emphasis is on the accuracy ofa relatively complicated analysis task such as classification. The analysis of large data sets requires the design of new tools that not only combine and generalize techniques from different areas, but also require the design and development ofaltogether new scalable techniques