Guided Self-Organization: Inception

Is it possible to guide the process of self-organisation towards specific patterns and outcomes?  Wouldn’t this be self-contradictory?   After all, a self-organising process assumes a transition into a more organised form, or towards a more structured functionality, in the absence of centralised con...

Full description

Bibliographic Details
Other Authors: Prokopenko, Mikhail (Editor)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2014, 2014
Edition:1st ed. 2014
Series:Emergence, Complexity and Computation
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02723nmm a2200373 u 4500
001 EB000423421
003 EBX01000000000000000276503
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140107 ||| eng
020 |a 9783642537349 
100 1 |a Prokopenko, Mikhail  |e [editor] 
245 0 0 |a Guided Self-Organization: Inception  |h Elektronische Ressource  |c edited by Mikhail Prokopenko 
250 |a 1st ed. 2014 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2014, 2014 
300 |a XXII, 475 p. 172 illus., 54 illus. in color  |b online resource 
505 0 |a Foundational frameworks -- Coordinated behaviour and learning within an embodied agent -- Swarms and networks of agents 
653 |a Nonlinear Optics 
653 |a Computer science 
653 |a Computational intelligence 
653 |a Applied Dynamical Systems 
653 |a Artificial Intelligence 
653 |a Computational Intelligence 
653 |a Nonlinear theories 
653 |a Artificial intelligence 
653 |a Theory of Computation 
653 |a Dynamics 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Emergence, Complexity and Computation 
028 5 0 |a 10.1007/978-3-642-53734-9 
856 4 0 |u https://doi.org/10.1007/978-3-642-53734-9?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 515.39 
520 |a Is it possible to guide the process of self-organisation towards specific patterns and outcomes?  Wouldn’t this be self-contradictory?   After all, a self-organising process assumes a transition into a more organised form, or towards a more structured functionality, in the absence of centralised control.  Then how can we place the guiding elements so that they do not override rich choices potentially discoverable by an uncontrolled process?  This book presents different approaches to resolving this paradox.  In doing so, the presented studies address a broad range of phenomena, ranging from autopoietic systems to morphological computation, and from small-world networks to information cascades in swarms.  A large variety of methods is employed, from spontaneous symmetry breaking to information dynamics to evolutionary algorithms, creating a rich spectrum reflecting this emerging field. Demonstrating several foundational theories and frameworks, as well as innovative practical implementations, Guided Self-Organisation: Inception, will be an invaluable tool for advanced students and researchers in a multiplicity of fields across computer science, physics and biology, including information theory, robotics, dynamical systems, graph theory, artificial life, multi-agent systems, theory of computation and machine learning