Reliability Physics and Engineering Time-To-Failure Modeling

Reliability Physics and Engineering provides critically important information that is needed for designing and building reliable cost-effective products. Key features include:  ·       Materials/Device Degradation ·       Degradation Kinetics ·       Time-To-Failure Modeling ·       Statistical Tool...

Full description

Bibliographic Details
Main Author: McPherson, J. W.
Format: eBook
Language:English
Published: Cham Springer International Publishing 2013, 2013
Edition:2nd ed. 2013
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
Table of Contents:
  • Introduction
  • Materials and Device Degradation
  • From Material/Device Degradation to Time-To-Failure
  • Time-To-Failure Modeling
  • Gaussian Statistics – An Overview
  • Time-To-Failure Statistics
  • Failure Rate Modeling
  • Accelerated Degradation
  • Acceleration Factor Modeling
  • Ramp-To-Failure Testing
  • Time-To-Failure Models for Selected Failure Mechanisms in Integrated Circuits Breakdown (TDDB)
  • Time-To-Failure Models for Selected Failure Mechanisms In Mechanical Engineering
  • Conversion of Dynamical Stresses Into Effective Static Values
  • Increasing the Reliability of Device/Product Designs
  • Screening
  • Heat Generation and Dissipation
  • Sampling Plans and Confidence Intervals
  • Appendix A: Useful Conversion Factors
  • Appendix B: Useful Physical Constants
  • Appendix C: Useful Rough Rules-Of-Thumb
  • Appendix D: Useful Mathematical Expressions
  • Appendix E: Useful Differentials and Definite Integrals
  • Appendix F: Free-Energy
  • Appendix G: t(1-α/2,ν) Distribution Values
  • Appendix H: χ2(P,ν) Distribution Values
  • Index