Determinantal Ideals

Determinantal ideals are ideals generated by minors of a homogeneous polynomial matrix. Some classical ideals that can be generated in this way are the ideal of the Veronese varieties, of the Segre varieties, and of the rational normal scrolls. Determinantal ideals are a central topic in both commut...

Full description

Main Author: Miró-Roig, Rosa M.
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Basel Birkhäuser Basel 2008, 2008
Edition:1st ed. 2008
Series:Progress in Mathematics
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
Summary:Determinantal ideals are ideals generated by minors of a homogeneous polynomial matrix. Some classical ideals that can be generated in this way are the ideal of the Veronese varieties, of the Segre varieties, and of the rational normal scrolls. Determinantal ideals are a central topic in both commutative algebra and algebraic geometry, and they also have numerous connections with invariant theory, representation theory, and combinatorics. Due to their important role, their study has attracted many researchers and has received considerable attention in the literature. In this book three crucial problems are addressed: CI-liaison class and G-liaison class of standard determinantal ideals; the multiplicity conjecture for standard determinantal ideals; and unobstructedness and dimension of families of standard determinantal ideals
Physical Description:XVI, 140 p online resource
ISBN:9783764385354