Algebraic Approaches to Partial Differential Equations

This book presents the various algebraic techniques for solving partial differential equations to yield exact solutions, techniques developed by the author in recent years and with emphasis on physical equations such as: the Maxwell equations, the Dirac equations, the KdV equation,  the KP equation,...

Full description

Bibliographic Details
Main Author: Xu, Xiaoping
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2013, 2013
Edition:1st ed. 2013
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02152nmm a2200313 u 4500
001 EB000391227
003 EBX01000000000000000244280
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9783642368745 
100 1 |a Xu, Xiaoping 
245 0 0 |a Algebraic Approaches to Partial Differential Equations  |h Elektronische Ressource  |c by Xiaoping Xu 
250 |a 1st ed. 2013 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2013, 2013 
300 |a XXIV, 394 p  |b online resource 
505 0 |a Preface -- Introduction -- Ordinary Differential Equations -- Partial Differential Equations -- Bibliography -- Index 
653 |a Mathematical Physics 
653 |a Mathematical physics 
653 |a Applications of Mathematics 
653 |a Mathematics 
653 |a Differential Equations 
653 |a Differential equations 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
028 5 0 |a 10.1007/978-3-642-36874-5 
856 4 0 |u https://doi.org/10.1007/978-3-642-36874-5?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 515.35 
520 |a This book presents the various algebraic techniques for solving partial differential equations to yield exact solutions, techniques developed by the author in recent years and with emphasis on physical equations such as: the Maxwell equations, the Dirac equations, the KdV equation,  the KP equation,  the nonlinear Schrodinger equation,  the Davey and Stewartson equations, the Boussinesq equations in geophysics,  the Navier-Stokes equations and the boundary layer problems.  In order to solve them, I have employed the grading technique, matrix differential operators, stable-range of nonlinear terms, moving frames, asymmetric assumptions,  symmetry transformations,  linearization techniques  and  special functions. The book is self-contained and requires only a minimal understanding of calculus and linear algebra, making it accessible to a broad audience in the fields of mathematics, the sciences and engineering. Readers may find the exact solutions and mathematical skills needed in their own research