Statistical Analysis of Climate Series Analyzing, Plotting, Modeling, and Predicting with R

The book presents the application of statistical methods to climatological data on temperature and precipitation. It provides specific techniques for treating series of yearly, monthly and daily records. The results’ potential relevance in the climate context is discussed. The methodical tools are t...

Full description

Bibliographic Details
Main Author: Pruscha, Helmut
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2013, 2013
Edition:1st ed. 2013
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02563nmm a2200349 u 4500
001 EB000389953
003 EBX01000000000000000243006
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9783642320842 
100 1 |a Pruscha, Helmut 
245 0 0 |a Statistical Analysis of Climate Series  |h Elektronische Ressource  |b Analyzing, Plotting, Modeling, and Predicting with R  |c by Helmut Pruscha 
250 |a 1st ed. 2013 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2013, 2013 
300 |a VIII, 176 p  |b online resource 
505 0 |a Climate series -- Trend and Season -- Correlation: From Yearly to Daily Data -- Model and Prediction: Yearly Data -- Model and Prediction: Monthly Data -- Analysis of Daily Data -- Spectral Analysis -- Complements -- Appendices: A: Excerpt from Climate Data Sets -- B: Some Aspects of Time Series -- C:Categorical Data Analysis- References -- Index 
653 |a Statistical Theory and Methods 
653 |a Climatology 
653 |a Statistics  
653 |a Climate Sciences 
653 |a Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences 
653 |a Atmospheric Science 
653 |a Atmospheric science 
653 |a Mathematical statistics / Data processing 
653 |a Statistics and Computing 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
028 5 0 |a 10.1007/978-3-642-32084-2 
856 4 0 |u https://doi.org/10.1007/978-3-642-32084-2?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 519 
520 |a The book presents the application of statistical methods to climatological data on temperature and precipitation. It provides specific techniques for treating series of yearly, monthly and daily records. The results’ potential relevance in the climate context is discussed. The methodical tools are taken from time series analysis, from periodogram and wavelet analysis, from correlation and principal component analysis, and from categorical data and event-time analysis. The applied models are - among others - the ARIMA and GARCH model, and inhomogeneous Poisson processes. Further, we deal with a number of special statistical topics, e.g. the problem of trend-, season- and autocorrelation-adjustment, and with simultaneous statistical inference. Programs in R and data sets on climate series, provided at the author’s homepage, enable readers (statisticians, meteorologists, other natural scientists) to perform their own exercises and discover their own applications