Self-Evolvable Systems Machine Learning in Social Media

This monograph presents key method to successfully manage the growing  complexity of systems  where conventional engineering and scientific methodologies and technologies based on learning and adaptability come to their limits and new ways are nowadays required. The transition from adaptable to evol...

Full description

Bibliographic Details
Main Author: Iordache, Octavian
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2012, 2012
Edition:1st ed. 2012
Series:Understanding Complex Systems
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 01936nmm a2200325 u 4500
001 EB000388961
003 EBX01000000000000000242014
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9783642288821 
100 1 |a Iordache, Octavian 
245 0 0 |a Self-Evolvable Systems  |h Elektronische Ressource  |b Machine Learning in Social Media  |c by Octavian Iordache 
250 |a 1st ed. 2012 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2012, 2012 
300 |a XXII, 278 p  |b online resource 
505 0 |a Introduction -- General Framework -- Differential Models -- Informational Criteria -- Self-Evolvability for Physical and Chemical Systems -- Self-Evolvability for Biosystems -- Self-Evolvability for Cognitive Systems -- Control Systems -- Manufacturing Systems -- Concept Lattices -- Design of Experiments -- Perspectives 
653 |a Nonlinear Optics 
653 |a Computational intelligence 
653 |a Applied Dynamical Systems 
653 |a Computational Intelligence 
653 |a Nonlinear theories 
653 |a Dynamics 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Understanding Complex Systems 
028 5 0 |a 10.1007/978-3-642-28882-1 
856 4 0 |u https://doi.org/10.1007/978-3-642-28882-1?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 515.39 
520 |a This monograph presents key method to successfully manage the growing  complexity of systems  where conventional engineering and scientific methodologies and technologies based on learning and adaptability come to their limits and new ways are nowadays required. The transition from adaptable to evolvable and finally to self-evolvable systems is highlighted, self-properties such as self-organization, self-configuration, and self-repairing are introduced and challenges and limitations of the self-evolvable engineering systems are evaluated