Laser Wakefield Electron Acceleration : A Novel Approach Employing Supersonic Microjets and Few-Cycle Laser Pulses

This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. This process, known as laser wakefield acceleration (LWFA), relies on strongly driven plasma waves for the generation of accelerating gradients in the vicinity of several 100 GV/m, a value four order...

Full description

Main Author: Schmid, Karl
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2011, 2011
Edition:1st ed. 2011
Series:Springer Theses, Recognizing Outstanding Ph.D. Research
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02105nmm a2200313 u 4500
001 EB000386467
003 EBX01000000000000000239519
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9783642199509 
100 1 |a Schmid, Karl 
245 0 0 |a Laser Wakefield Electron Acceleration  |h Elektronische Ressource  |b A Novel Approach Employing Supersonic Microjets and Few-Cycle Laser Pulses  |c by Karl Schmid 
250 |a 1st ed. 2011 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2011, 2011 
300 |a XIV, 166 p  |b online resource 
505 0 |a Theory and Simulation -- Experimental Setup -- Experimental Results on Electron Acceleration -- Next Steps for Optimizing the Accelerator -- A. Numeric Setup of the Fluid Flow Simulations -- B. Nozzle Designs 
653 |a Particle Acceleration and Detection, Beam Physics 
653 |a Plasma Physics 
653 |a Optics, Lasers, Photonics, Optical Devices 
653 |a Particle acceleration 
710 2 |a SpringerLink (Online service) 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research 
856 |u https://doi.org/10.1007/978-3-642-19950-9?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 530.44 
520 |a This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. This process, known as laser wakefield acceleration (LWFA), relies on strongly driven plasma waves for the generation of accelerating gradients in the vicinity of several 100 GV/m, a value four orders of magnitude larger than that attainable by conventional accelerators. This thesis demonstrates that laser pulses with an ultrashort duration of 8 fs and a peak power of 6 TW allow the production of electron energies up to 50 MeV via LWFA. The special properties of laser accelerated electron pulses, namely the ultrashort pulse duration, the high brilliance, and the high charge density, open up new possibilities in many applications of these electron beams