Uncertainty Theory : A Branch of Mathematics for Modeling Human Uncertainty

Uncertainty theory is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms. Uncertainty is any concept that satisfies the axioms of uncertainty theory. Thus uncertainty is neither randomness nor fuzziness. It is also known from s...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Liu, Baoding (Editor)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2010, 2010
Edition:1st ed. 2010
Series:Studies in Computational Intelligence
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02616nmm a2200373 u 4500
001 EB000384729
003 EBX01000000000000000237781
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9783642139598 
100 1 |a Liu, Baoding  |e [editor] 
245 0 0 |a Uncertainty Theory  |h Elektronische Ressource  |b A Branch of Mathematics for Modeling Human Uncertainty  |c edited by Baoding Liu 
250 |a 1st ed. 2010 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2010, 2010 
300 |a XI, 350 p  |b online resource 
505 0 |a Uncertainty Theory -- Uncertain Programming -- Uncertain Risk Analysis -- Uncertain Reliability Analysis -- Uncertain Process -- Uncertain Calculus -- Uncertain Differential Equation -- Uncertain Logic -- Uncertain Entailment -- Uncertain Set Theory -- Uncertain Inference 
653 |a E-commerce 
653 |a Computational intelligence 
653 |a Artificial Intelligence 
653 |a Computational Intelligence 
653 |a IT in Business 
653 |a Artificial intelligence 
653 |a Business—Data processing 
653 |a e-Commerce/e-business 
653 |a Information technology 
710 2 |a SpringerLink (Online service) 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Studies in Computational Intelligence 
856 |u https://doi.org/10.1007/978-3-642-13959-8?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 006.3 
520 |a Uncertainty theory is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms. Uncertainty is any concept that satisfies the axioms of uncertainty theory. Thus uncertainty is neither randomness nor fuzziness. It is also known from some surveys that a lot of phenomena do behave like uncertainty. How do we model uncertainty? How do we use uncertainty theory? In order to answer these questions, this book provides a self-contained, comprehensive and up-to-date presentation of uncertainty theory, including uncertain programming, uncertain risk analysis, uncertain reliability analysis, uncertain process, uncertain calculus, uncertain differential equation, uncertain logic, uncertain entailment, and uncertain inference. Mathematicians, researchers, engineers, designers, and students in the field of mathematics, information science, operations research, system science, industrial engineering, computer science, artificial intelligence, finance, control, and management science will find this work a stimulating and useful reference