Regularity of Minimal Surfaces

Regularity of Minimal Surfaces begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and bou...

Full description

Bibliographic Details
Main Authors: Dierkes, Ulrich, Hildebrandt, Stefan (Author), Tromba, Anthony (Author)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2010, 2010
Edition:2nd ed. 2010
Series:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03334nmm a2200421 u 4500
001 EB000383988
003 EBX01000000000000000237040
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9783642117008 
100 1 |a Dierkes, Ulrich 
245 0 0 |a Regularity of Minimal Surfaces  |h Elektronische Ressource  |c by Ulrich Dierkes, Stefan Hildebrandt, Anthony Tromba 
250 |a 2nd ed. 2010 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2010, 2010 
300 |a XVII, 623 p. 68 illus., 6 illus. in color  |b online resource 
505 0 |a Boundary Behaviour of Minimal Surfaces -- Minimal Surfaces with Free Boundaries -- The Boundary Behaviour of Minimal Surfaces -- Singular Boundary Points of Minimal Surfaces -- Geometric Properties of Minimal Surfaces -- Enclosure and Existence Theorems for Minimal Surfaces and H-Surfaces. Isoperimetric Inequalities -- The Thread Problem -- Branch Points 
653 |a Geometry, Differential 
653 |a Functions of complex variables 
653 |a Calculus of Variations and Optimization 
653 |a Functions of a Complex Variable 
653 |a Mathematical physics 
653 |a Differential Geometry 
653 |a Differential Equations 
653 |a Mathematical optimization 
653 |a Theoretical, Mathematical and Computational Physics 
653 |a Differential equations 
653 |a Calculus of variations 
700 1 |a Hildebrandt, Stefan  |e [author] 
700 1 |a Tromba, Anthony  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics 
028 5 0 |a 10.1007/978-3-642-11700-8 
856 4 0 |u https://doi.org/10.1007/978-3-642-11700-8?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 515.64 
082 0 |a 519.6 
520 |a Regularity of Minimal Surfaces begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is that, for principal reasons, it is impossible to derive a priori estimates. Therefore regularity proofs for non-minimizers have to be based on indirect reasoning using monotonicity formulas. This is followed by a long chapter discussing geometric properties of minimal and H-surfaces such as enclosure theorems and isoperimetric inequalities, leading to the discussion of obstacle problems and of Plateau´s problem for H-surfaces in a Riemannian manifold. A natural generalization of the isoperimetric problem is the so-called thread problem, dealing with minimal surfaces whose boundary consists of a fixed arc of given length. Existence and regularity of solutions are discussed. The final chapter on branch points presents a new approach to the theorem that area minimizing solutions of Plateau´s problem have no interior branch points