Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication

The main goal of this book is the construction of families of Calabi-Yau 3-manifolds with dense sets of complex multiplication fibers. The new families are determined by combining and generalizing two methods. Firstly, the method of E. Viehweg and K. Zuo, who have constructed a deformation of the Fe...

Full description

Bibliographic Details
Main Author: Rohde, Christian
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2009, 2009
Edition:1st ed. 2009
Series:Lecture Notes in Mathematics
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02596nmm a2200265 u 4500
001 EB000381952
003 EBX01000000000000000235004
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9783642006395 
100 1 |a Rohde, Christian 
245 0 0 |a Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication  |h Elektronische Ressource  |c by Christian Rohde 
250 |a 1st ed. 2009 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2009, 2009 
300 |a IX, 228 p  |b online resource 
505 0 |a An Introduction to Hodge Structures and Shimura Varieties -- Cyclic Covers of the Projective Line -- Some Preliminaries for Families of Cyclic Covers -- The Galois Group Decomposition of the Hodge Structure -- The Computation of the Hodge Group -- Examples of Families with Dense Sets of Complex Multiplication Fibers -- The Construction of Calabi-Yau Manifolds with Complex Multiplication -- The Degree 3 Case -- Other Examples and Variations -- Examples of Families of 3-manifolds and their Invariants -- Maximal Families of CMCY Type 
653 |a Algebraic Geometry 
653 |a Algebraic geometry 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Lecture Notes in Mathematics 
856 4 0 |u https://doi.org/10.1007/978-3-642-00639-5?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 516.35 
520 |a The main goal of this book is the construction of families of Calabi-Yau 3-manifolds with dense sets of complex multiplication fibers. The new families are determined by combining and generalizing two methods. Firstly, the method of E. Viehweg and K. Zuo, who have constructed a deformation of the Fermat quintic with a dense set of CM fibers by a tower of cyclic coverings. Using this method, new families of K3 surfaces with dense sets of CM fibers and involutions are obtained. Secondly, the construction method of the Borcea-Voisin mirror family, which in the case of the author's examples yields families of Calabi-Yau 3-manifolds with dense sets of CM fibers, is also utilized. Moreover fibers with complex multiplication of these new families are also determined. This book was written for young mathematicians, physicists and also for experts who are interested in complex multiplication and varieties with complex multiplication. The reader is introduced to generic Mumford-Tate groups and Shimura data, which are among the main tools used here. The generic Mumford-Tate groups of families of cyclic covers of the projective line are computed for a broad range of examples