Structure in Complex Networks

In the modern world of gigantic datasets, which scientists and practioners of all fields of learning are confronted with, the availability of robust, scalable and easy-to-use methods for pattern recognition and data mining are of paramount importance, so as to be able to cope with the avalanche of d...

Full description

Bibliographic Details
Main Author: Reichardt, Jörg
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2009, 2009
Edition:1st ed. 2009
Series:Lecture Notes in Physics
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02756nmm a2200385 u 4500
001 EB000381108
003 EBX01000000000000000234160
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9783540878339 
100 1 |a Reichardt, Jörg 
245 0 0 |a Structure in Complex Networks  |h Elektronische Ressource  |c by Jörg Reichardt 
250 |a 1st ed. 2009 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2009, 2009 
300 |a XIII, 151 p  |b online resource 
505 0 |a to Complex Networks -- Standard Approaches to Network Structure: Block Modeling -- A First Principles Approach to Block Structure Detection -- Diagonal Block Models as Cohesive Groups -- Modularity of Dense Random Graphs -- Modularity of Sparse Random Graphs -- Applications -- Conclusion and Outlook 
653 |a Complex Systems 
653 |a Computer science 
653 |a Artificial Intelligence 
653 |a Algorithms 
653 |a System theory 
653 |a Quantitative Economics 
653 |a Artificial intelligence 
653 |a Mathematical physics 
653 |a Econometrics 
653 |a Theory of Computation 
653 |a Theoretical, Mathematical and Computational Physics 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Lecture Notes in Physics 
028 5 0 |a 10.1007/978-3-540-87833-9 
856 4 0 |u https://doi.org/10.1007/978-3-540-87833-9?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 004.0151 
520 |a In the modern world of gigantic datasets, which scientists and practioners of all fields of learning are confronted with, the availability of robust, scalable and easy-to-use methods for pattern recognition and data mining are of paramount importance, so as to be able to cope with the avalanche of data in a meaningful way. This concise and pedagogical research monograph introduces the reader to two specific aspects - clustering techniques and dimensionality reduction - in the context of complex network analysis. The first chapter provides a short introduction into relevant graph theoretical notation; chapter 2 then reviews and compares a number of cluster definitions from different fields of science. In the subsequent chapters, a first-principles approach to graph clustering in complex networks is developed using methods from statistical physics and the reader will learn, that even today, this field significantly contributes to the understanding and resolution of the related statistical inference issues. Finally, an application chapter examines real-world networks from the economic realm to show how the network clustering process can be used to deal with large, sparse datasets where conventional analyses fail