Design and Analysis of Learning Classifier Systems A Probabilistic Approach

This book provides a comprehensive introduction to the design and analysis of Learning Classifier Systems (LCS) from the perspective of machine learning. LCS are a family of methods for handling unsupervised learning, supervised learning and sequential decision tasks by decomposing larger problem sp...

Full description

Bibliographic Details
Main Author: Drugowitsch, Jan
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2008, 2008
Edition:1st ed. 2008
Series:Studies in Computational Intelligence
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02701nmm a2200313 u 4500
001 EB000380715
003 EBX01000000000000000233767
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9783540798668 
100 1 |a Drugowitsch, Jan 
245 0 0 |a Design and Analysis of Learning Classifier Systems  |h Elektronische Ressource  |b A Probabilistic Approach  |c by Jan Drugowitsch 
250 |a 1st ed. 2008 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2008, 2008 
300 |a XIV, 267 p  |b online resource 
505 0 |a Background -- A Learning Classifier Systems Model -- A Probabilistic Model for LCS -- Training the Classifiers -- Mixing Independently Trained Classifiers -- The Optimal Set of Classifiers -- An Algorithmic Description -- Towards Reinforcement Learning with LCS -- Concluding Remarks 
653 |a Engineering mathematics 
653 |a Artificial Intelligence 
653 |a Artificial intelligence 
653 |a Engineering / Data processing 
653 |a Mathematical and Computational Engineering Applications 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Studies in Computational Intelligence 
028 5 0 |a 10.1007/978-3-540-79866-8 
856 4 0 |u https://doi.org/10.1007/978-3-540-79866-8?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 006.3 
520 |a This book provides a comprehensive introduction to the design and analysis of Learning Classifier Systems (LCS) from the perspective of machine learning. LCS are a family of methods for handling unsupervised learning, supervised learning and sequential decision tasks by decomposing larger problem spaces into easy-to-handle subproblems. Contrary to commonly approaching their design and analysis from the viewpoint of evolutionary computation, this book instead promotes a probabilistic model-based approach, based on their defining question "What is an LCS supposed to learn?". Systematically following this approach, it is shown how generic machine learning methods can be applied to design LCS algorithms from the first principles of their underlying probabilistic model, which is in this book -- for illustrative purposes -- closely related to the currently prominent XCS classifier system. The approach is holistic in the sense that the uniform goal-driven design metaphor essentially covers all aspects of LCS and puts them on a solid foundation, in addition to enabling the transfer of the theoretical foundation of the various applied machine learning methods onto LCS. Thus, it does not only advance the analysis of existing LCS but also puts forward the design of new LCS within that same framework