Stochastic Optimization Methods

Optimization problems arising in practice involve random model parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insensitive with respect to random parameter variations, appropriate deterministic substitute problems are needed. Based on the probability distri...

Full description

Bibliographic Details
Main Author: Marti, Kurt
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2008, 2008
Edition:2nd ed. 2008
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02764nmm a2200337 u 4500
001 EB000380626
003 EBX01000000000000000233678
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9783540794585 
100 1 |a Marti, Kurt 
245 0 0 |a Stochastic Optimization Methods  |h Elektronische Ressource  |c by Kurt Marti 
250 |a 2nd ed. 2008 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2008, 2008 
300 |a XIII, 340 p  |b online resource 
505 0 |a Basic Stochastic Optimization Methods -- Decision/Control Under Stochastic Uncertainty -- Deterministic Substitute Problems in Optimal Decision Under Stochastic Uncertainty -- Differentiation Methods -- Differentiation Methods for Probability and Risk Functions -- Deterministic Descent Directions -- Deterministic Descent Directions and Efficient Points -- Semi-Stochastic Approximation Methods -- RSM-Based Stochastic Gradient Procedures -- Stochastic Approximation Methods with Changing Error Variances -- Reliability Analysis of Structures/Systems -- Computation of Probabilities of Survival/Failure by Means of Piecewise Linearization of the State Function 
653 |a Engineering 
653 |a Operations research 
653 |a Optimization 
653 |a Computational intelligence 
653 |a Computational Intelligence 
653 |a Technology and Engineering 
653 |a Mathematical optimization 
653 |a Operations Research and Decision Theory 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
028 5 0 |a 10.1007/978-3-540-79458-5 
856 4 0 |u https://doi.org/10.1007/978-3-540-79458-5?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 658.403 
520 |a Optimization problems arising in practice involve random model parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insensitive with respect to random parameter variations, appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures, differentiation formulas for probabilities and expectations