Variational Methods Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems

Hilbert's talk at the second International Congress of 1900 in Paris marked the beginning of a new era in the calculus of variations. A development began which, within a few decades, brought tremendous success, highlighted by the 1929 theorem of Ljusternik and Schnirelman on the existence of th...

Full description

Bibliographic Details
Main Author: Struwe, Michael
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2008, 2008
Edition:4th ed. 2008
Series:Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03250nmm a2200349 u 4500
001 EB000379210
003 EBX01000000000000000232262
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9783540740131 
100 1 |a Struwe, Michael 
245 0 0 |a Variational Methods  |h Elektronische Ressource  |b Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems  |c by Michael Struwe 
250 |a 4th ed. 2008 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2008, 2008 
300 |a XX, 302 p  |b online resource 
505 0 |a The Direct Methods in the Calculus of Variations -- Lower Semi-Continuity -- Constraints -- Compensated Compactness -- The Concentration-Compactness Principle -- Ekeland's Variational Principle -- Duality -- Minimization Problems Depending on Parameters -- Minimax Methods -- The Finite Dimensional Case -- The Palais-Smale Condition -- A General Deformation Lemma -- The Minimax Principle -- Index Theory -- The Mountain Pass Lemma and its Variants -- Perturbation Theory -- Linking -- Parameter Dependence -- Critical Points of Mountain Pass Type -- Non-Differentiable Functionals -- Ljusternik-Schnirelman Theory on Convex Sets -- Limit Cases of the Palais-Smale Condition -- Pohozaev's Non-Existence Result -- The Brezis-Nierenberg Result -- The Effect of Topology -- The Yamabe Problem -- The Dirichlet Problem for the Equation of Constant Mean Curvature -- Harmonic Maps of Riemannian Surfaces -- Appendix A -- Appendix B -- Appendix C -- References -- Index 
653 |a Mathematical analysis 
653 |a Calculus of Variations and Optimization 
653 |a Control theory 
653 |a Systems Theory, Control 
653 |a Analysis 
653 |a System theory 
653 |a Mathematical optimization 
653 |a Calculus of variations 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 
028 5 0 |a 10.1007/978-3-540-74013-1 
856 4 0 |u https://doi.org/10.1007/978-3-540-74013-1?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 003 
520 |a Hilbert's talk at the second International Congress of 1900 in Paris marked the beginning of a new era in the calculus of variations. A development began which, within a few decades, brought tremendous success, highlighted by the 1929 theorem of Ljusternik and Schnirelman on the existence of three distinct prime closed geodesics on any compact surface of genus zero, and the 1930/31 solution of Plateau's problem by Douglas and Radó. The book gives a concise introduction to variational methods and presents an overview of areas of current research in the field. The fourth edition gives a survey on new developments in the field. In particular it includes the proof for the convergence of the Yamabe flow and a detailed treatment of the phenomenon of blow-up. Also the recently discovered results for backward bubbling in the heat flow for harmonic maps or surfaces are discussed. Aside from these more significant additions, a number of smaller changes throughout the text have been made and the references have been updated