Optimal Transport Old and New

At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G. Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. Th...

Full description

Bibliographic Details
Main Author: Villani, Cédric
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2009, 2009
Edition:1st ed. 2009
Series:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03252nmm a2200337 u 4500
001 EB000378325
003 EBX01000000000000000231377
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9783540710509 
100 1 |a Villani, Cédric 
245 0 0 |a Optimal Transport  |h Elektronische Ressource  |b Old and New  |c by Cédric Villani 
250 |a 1st ed. 2009 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2009, 2009 
300 |a XXII, 976 p  |b online resource 
505 0 |a Couplings and changes of variables -- Three examples of coupling techniques -- The founding fathers of optimal transport -- Qualitative description of optimal transport -- Basic properties -- Cyclical monotonicity and Kantorovich duality -- The Wasserstein distances -- Displacement interpolation -- The Monge—Mather shortening principle -- Solution of the Monge problem I: global approach -- Solution of the Monge problem II: Local approach -- The Jacobian equation -- Smoothness -- Qualitative picture -- Optimal transport and Riemannian geometry -- Ricci curvature -- Otto calculus -- Displacement convexity I -- Displacement convexity II -- Volume control -- Density control and local regularity -- Infinitesimal displacement convexity -- Isoperimetric-type inequalities -- Concentration inequalities -- Gradient flows I -- Gradient flows II: Qualitative properties -- Gradient flows III: Functional inequalities -- Synthetic treatment of Ricci curvature -- Analytic and synthetic points of view -- Convergence of metric-measure spaces -- Stability of optimal transport -- Weak Ricci curvature bounds I: Definition and Stability -- Weak Ricci curvature bounds II: Geometric and analytic properties 
653 |a Geometry, Differential 
653 |a Calculus of Variations and Optimization 
653 |a Differential Geometry 
653 |a Differential Equations 
653 |a Mathematical optimization 
653 |a Differential equations 
653 |a Calculus of variations 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics 
028 5 0 |a 10.1007/978-3-540-71050-9 
856 4 0 |u https://doi.org/10.1007/978-3-540-71050-9?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 515.35 
520 |a At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G. Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. The author presents a broad overview of this area, supplying complete and self-contained proofs of all the fundamental results of the theory of optimal transport at the appropriate level of generality. Thus, the book encompasses the broad spectrum ranging from basic theory to the most recent research results. PhD students or researchers can read the entire book without any prior knowledge of the field. A comprehensive bibliography with notes that extensively discuss the existing literature underlines the book’s value as a most welcome reference text on this subject.