Applied Graph Theory in Computer Vision and Pattern Recognition

This book will serve as a foundation for a variety of useful applications of graph theory to computer vision, pattern recognition, and related areas. It covers a representative set of novel graph-theoretic methods for complex computer vision and pattern recognition tasks. The first part of the book...

Full description

Bibliographic Details
Other Authors: Kandel, Abraham (Editor), Bunke, Horst (Editor), Last, Mark (Editor)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2007, 2007
Edition:1st ed. 2007
Series:Studies in Computational Intelligence
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
Description
Summary:This book will serve as a foundation for a variety of useful applications of graph theory to computer vision, pattern recognition, and related areas. It covers a representative set of novel graph-theoretic methods for complex computer vision and pattern recognition tasks. The first part of the book presents the application of graph theory to low-level processing of digital images such as a new method for partitioning a given image into a hierarchy of homogeneous areas using graph pyramids, or a study of the relationship between graph theory and digital topology. Part II presents graph-theoretic learning algorithms for high-level computer vision and pattern recognition applications, including a survey of graph based methodologies for pattern recognition and computer vision, a presentation of a series of computationally efficient algorithms for testing graph isomorphism and related graph matching tasks in pattern recognition and a new graph distance measure to be used for solving graph matching problems. Finally, Part III provides detailed descriptions of several applications of graph-based methods to real-world pattern recognition tasks. It includes a critical review of the main graph-based and structural methods for fingerprint classification, a new method to visualize time series of graphs, and potential applications in computer network monitoring and abnormal event detection
Physical Description:X, 266 p online resource
ISBN:9783540680208