Identification of Nonlinear Systems Using Neural Networks and Polynomial Models A Block-Oriented Approach

This monograph systematically presents the existing identification methods of nonlinear systems using the block-oriented approach It surveys various known approaches to the identification of Wiener and Hammerstein systems which are applicable to both neural network and polynomial models. The book gi...

Full description

Bibliographic Details
Main Author: Janczak, Andrzej
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2005, 2005
Edition:1st ed. 2005
Series:Lecture Notes in Control and Information Sciences
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02304nmm a2200421 u 4500
001 EB000374897
003 EBX01000000000000000227949
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9783540315964 
100 1 |a Janczak, Andrzej 
245 0 0 |a Identification of Nonlinear Systems Using Neural Networks and Polynomial Models  |h Elektronische Ressource  |b A Block-Oriented Approach  |c by Andrzej Janczak 
250 |a 1st ed. 2005 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2005, 2005 
300 |a XIV, 199 p  |b online resource 
505 0 |a Introduction -- Neural network Wiener models -- Neural network Hammerstein models -- Polynomial Wiener models -- Polynomial Hammerstein models -- Applications 
653 |a Mechanics, Applied 
653 |a Complex Systems 
653 |a Control, Robotics, Automation 
653 |a Control theory 
653 |a Systems Theory, Control 
653 |a Multibody Systems and Mechanical Vibrations 
653 |a System theory 
653 |a Vibration 
653 |a Control engineering 
653 |a Robotics 
653 |a Mathematical physics 
653 |a Multibody systems 
653 |a Automation 
653 |a Theoretical, Mathematical and Computational Physics 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Lecture Notes in Control and Information Sciences 
028 5 0 |a 10.1007/b98334 
856 4 0 |u https://doi.org/10.1007/b98334?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 629.8 
520 |a This monograph systematically presents the existing identification methods of nonlinear systems using the block-oriented approach It surveys various known approaches to the identification of Wiener and Hammerstein systems which are applicable to both neural network and polynomial models. The book gives a comparative study of their gradient approximation accuracy, computational complexity, and convergence rates and furthermore presents some new and original methods concerning the model parameter adjusting with gradient-based techniques. "Identification of Nonlinear Systems Using Neural Networks and Polynomal Models" is useful for researchers, engineers and graduate students in nonlinear systems and neural network theory