Geometric Numerical Integration : Structure-Preserving Algorithms for Ordinary Differential Equations

Numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions are the subject of this book. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, com...

Full description

Main Authors: Hairer, Ernst, Lubich, Christian (Author), Wanner, Gerhard (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2006, 2006
Edition:2nd ed. 2006
Series:Springer Series in Computational Mathematics
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03188nmm a2200397 u 4500
001 EB000374538
003 EBX01000000000000000227590
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9783540306665 
100 1 |a Hairer, Ernst 
245 0 0 |a Geometric Numerical Integration  |h Elektronische Ressource  |b Structure-Preserving Algorithms for Ordinary Differential Equations  |c by Ernst Hairer, Christian Lubich, Gerhard Wanner 
250 |a 2nd ed. 2006 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2006, 2006 
300 |a XVI, 644 p  |b online resource 
505 0 |a Examples and Numerical Experiments -- Numerical Integrators -- Order Conditions, Trees and B-Series -- Conservation of First Integrals and Methods on Manifolds -- Symmetric Integration and Reversibility -- Symplectic Integration of Hamiltonian Systems -- Non-Canonical Hamiltonian Systems -- Structure-Preserving Implementation -- Backward Error Analysis and Structure Preservation -- Hamiltonian Perturbation Theory and Symplectic Integrators -- Reversible Perturbation Theory and Symmetric Integrators -- Dissipatively Perturbed Hamiltonian and Reversible Systems -- Oscillatory Differential Equations with Constant High Frequencies -- Oscillatory Differential Equations with Varying High Frequencies -- Dynamics of Multistep Methods 
653 |a Mathematical and Computational Biology 
653 |a Numerical and Computational Physics, Simulation 
653 |a Mathematical physics 
653 |a Numerical analysis 
653 |a Mathematical Methods in Physics 
653 |a Numerical Analysis 
653 |a Theoretical, Mathematical and Computational Physics 
653 |a Global analysis (Mathematics) 
653 |a Analysis 
700 1 |a Lubich, Christian  |e [author] 
700 1 |a Wanner, Gerhard  |e [author] 
710 2 |a SpringerLink (Online service) 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Springer Series in Computational Mathematics 
856 |u https://doi.org/10.1007/3-540-30666-8?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 518 
520 |a Numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions are the subject of this book. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by many figures, it treats applications from physics and astronomy and contains many numerical experiments and comparisons of different approaches. The second edition is substantially revised and enlarged, with many improvements in the presentation and additions concerning in particular non-canonical Hamiltonian systems, highly oscillatory mechanical systems, and the dynamics of multistep methods