Dynamic Modeling, Predictive Control and Performance Monitoring A Data-driven Subspace Approach

A typical design procedure for model predictive control or control performance monitoring consists of: 1. identification of a parametric or nonparametric model; 2. derivation of the output predictor from the model; 3. design of the control law or calculation of performance indices according to the p...

Full description

Bibliographic Details
Main Authors: Huang, Biao, Kadali, Ramesh (Author)
Format: eBook
Language:English
Published: London Springer London 2008, 2008
Edition:1st ed. 2008
Series:Lecture Notes in Control and Information Sciences
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03320nmm a2200481 u 4500
001 EB000367536
003 EBX01000000000000000220588
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9781848002333 
100 1 |a Huang, Biao 
245 0 0 |a Dynamic Modeling, Predictive Control and Performance Monitoring  |h Elektronische Ressource  |b A Data-driven Subspace Approach  |c by Biao Huang, Ramesh Kadali 
250 |a 1st ed. 2008 
260 |a London  |b Springer London  |c 2008, 2008 
300 |a XXIV, 242 p. 63 illus  |b online resource 
505 0 |a I Dynamic Modeling through Subspace Identification -- System Identification: Conventional Approach -- Open-loop Subspace Identification -- Closed-loop Subspace Identification -- Identification of Dynamic Matrix and Noise Model Using Closed-loop Data -- II Predictive Control -- Model Predictive Control: Conventional Approach -- Data-driven Subspace Approach to Predictive Control -- III Control Performance Monitoring -- Control Loop Performance Assessment: Conventional Approach -- State-of-the-art MPC Performance Monitoring -- Subspace Approach to MIMO Feedback Control Performance Assessment -- Prediction Error Approach to Feedback Control Performance Assessment -- Performance Assessment with LQG-benchmark from Closed-loop Data 
653 |a Mechanics, Applied 
653 |a Control, Robotics, Automation 
653 |a Applied Dynamical Systems 
653 |a Control and Systems Theory 
653 |a Control theory 
653 |a Systems Theory, Control 
653 |a Multibody Systems and Mechanical Vibrations 
653 |a System theory 
653 |a Nonlinear theories 
653 |a Vibration 
653 |a Chemistry, Technical 
653 |a Control engineering 
653 |a Robotics 
653 |a Multibody systems 
653 |a Automation 
653 |a Industrial Chemistry 
653 |a Dynamics 
700 1 |a Kadali, Ramesh  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Lecture Notes in Control and Information Sciences 
028 5 0 |a 10.1007/978-1-84800-233-3 
856 4 0 |u https://doi.org/10.1007/978-1-84800-233-3?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 629.8312 
082 0 |a 003 
520 |a A typical design procedure for model predictive control or control performance monitoring consists of: 1. identification of a parametric or nonparametric model; 2. derivation of the output predictor from the model; 3. design of the control law or calculation of performance indices according to the predictor. Both design problems need an explicit model form and both require this three-step design procedure. Can this design procedure be simplified? Can an explicit model be avoided? With these questions in mind, the authors eliminate the first and second step of the above design procedure, a “data-driven” approach in the sense that no traditional parametric models are used; hence, the intermediate subspace matrices, which are obtained from the process data and otherwise identified as a first step in the subspace identification methods, are used directly for the designs. Without using an explicit model, the design procedure is simplified and the modelling error caused by parameterization is eliminated