Motion Coordination for VTOL Unmanned Aerial Vehicles Attitude Synchronisation and Formation Control

Motion Coordination for VTOL Unmanned Aerial Vehicles develops new control design techniques for the distributed coordination of a team of autonomous unmanned aerial vehicles. In particular, it provides new control design approaches for the attitude synchronization of a formation of rigid body syste...

Full description

Bibliographic Details
Main Authors: Abdessameud, Abdelkader, Tayebi, Abdelhamid (Author)
Format: eBook
Language:English
Published: London Springer London 2013, 2013
Edition:1st ed. 2013
Series:Advances in Industrial Control
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
Description
Summary:Motion Coordination for VTOL Unmanned Aerial Vehicles develops new control design techniques for the distributed coordination of a team of autonomous unmanned aerial vehicles. In particular, it provides new control design approaches for the attitude synchronization of a formation of rigid body systems. In addition, by integrating new control design techniques with some concepts from nonlinear control theory and multi-agent systems, it presents  a new theoretical framework for the formation control of a class of under-actuated aerial vehicles capable of vertical take-off and landing. Several practical problems related to the systems’ inputs, states measurements, and  restrictions on the interconnection  topology  between the aerial vehicles in the team  are addressed. Worked examples with sufficient details and simulation results are provided to illustrate the applicability and effectiveness of the theoretical results discussed in the book. The material presented is primarily intended for researchers and industrial engineers from robotics, control engineering  and aerospace communities. It also serves as  a complementary reading for graduate students involved in research related to flying robotics, aerospace, control of under-actuated systems, and nonlinear control theory
Physical Description:XV, 182 p online resource
ISBN:9781447150947