Multidimensional Data Visualization Methods and Applications

The goal of this book is to present a variety of methods used  in multidimensional data visualization. The emphasis is placed on new research results and trends in this field, including optimization, artificial neural networks, combinations of algorithms, parallel computing, different proximity meas...

Full description

Bibliographic Details
Main Authors: Dzemyda, Gintautas, Kurasova, Olga (Author), Žilinskas, Julius (Author)
Format: eBook
Language:English
Published: New York, NY Springer New York 2013, 2013
Edition:1st ed. 2013
Series:Springer Optimization and Its Applications
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02932nmm a2200373 u 4500
001 EB000361502
003 EBX01000000000000000214554
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9781441902368 
100 1 |a Dzemyda, Gintautas 
245 0 0 |a Multidimensional Data Visualization  |h Elektronische Ressource  |b Methods and Applications  |c by Gintautas Dzemyda, Olga Kurasova, Julius Žilinskas 
250 |a 1st ed. 2013 
260 |a New York, NY  |b Springer New York  |c 2013, 2013 
300 |a XII, 252 p  |b online resource 
505 0 |a Preface -- 1. Multidimensional Data and the Concept of Visualization -- 2. Strategies for Multidimensional Data Visualization -- 3. Optimization-Based Visualization -- 4. Combining Multidimensional Scaling with Artificial Neural Networks -- 5. Applications of Visualizations -- A. Test Data Sets -- References -- Index 
653 |a Optimization 
653 |a Computer simulation 
653 |a Artificial Intelligence 
653 |a Computer Modelling 
653 |a Information visualization 
653 |a Artificial intelligence 
653 |a Data and Information Visualization 
653 |a Mathematical optimization 
700 1 |a Kurasova, Olga  |e [author] 
700 1 |a Žilinskas, Julius  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Springer Optimization and Its Applications 
028 5 0 |a 10.1007/978-1-4419-0236-8 
856 4 0 |u https://doi.org/10.1007/978-1-4419-0236-8?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 519.6 
520 |a The goal of this book is to present a variety of methods used  in multidimensional data visualization. The emphasis is placed on new research results and trends in this field, including optimization, artificial neural networks, combinations of algorithms, parallel computing, different proximity measures, nonlinear manifold learning,  and more. Many of the applications presented allow us to discover the obvious advantages of visual data mining—it is much easier for a decision maker to detect or extract useful information from graphical representation of data than from raw numbers. The fundamental idea of visualization is to provide data in some visual form that lets humans  understand them, gain insight into the data, draw conclusions, and directly influence the process of decision making. Visual data mining is a field where human participation is integrated in the data analysis process; it covers data visualization and graphical presentation of information. Multidimensional Data Visualization is intended for scientists and researchers in any field of study where complex and multidimensional data must be visually represented. It may also serve as a useful research supplement for PhD students in operations research, computer science, various fields of engineering,  as well as natural and social sciences