A Short History of Mathematical Population Dynamics

<p>As Eugene Wigner stressed, mathematics has proven unreasonably effective in the physical sciences and their technological applications. The role of mathematics in the biological, medical and social sciences has been much more modest but has recently grown thanks to the simulation capacity o...

Full description

Bibliographic Details
Main Author: Bacaër, Nicolas
Format: eBook
Language:English
Published: London Springer London 2011, 2011
Edition:1st ed. 2011
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03440nmm a2200325 u 4500
001 EB000357532
003 EBX01000000000000000210584
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9780857291158 
100 1 |a Bacaër, Nicolas 
245 0 0 |a A Short History of Mathematical Population Dynamics  |h Elektronische Ressource  |c by Nicolas Bacaër 
250 |a 1st ed. 2011 
260 |a London  |b Springer London  |c 2011, 2011 
300 |a X, 160 p. 60 illus  |b online resource 
505 0 |a The Fibonacci sequence (1202) -- Halley’s life table (1693) -- Euler and the geometric growth of populations (1748–1761) -- Daniel Bernoulli, d’Alembert and the inoculation of smallpox (1760) -- Malthus and the obstacles to geometric growth (1798) -- Verhulst and the logistic equation (1838) -- Bienaymé, Cournot and the extinction of family names (1845–1847) -- Mendel and heredity (1865) -- Galton, Watson and the extinction problem (1873–1875) -- Lotka and stable population theory (1907–1911) -- The Hardy–Weinberg law (1908) -- Ross and malaria (1911) -- Lotka, Volterra and the predator–prey system (1920–1926) -- Fisher and natural selection (1922) -- Yule and evolution (1924) -- McKendrick and Kermack on epidemic modelling (1926–1927) -- Haldane and mutations (1927) -- Erlang and Steffensen on the extinction problem (1929–1933) -- Wright and random genetic drift (1931) -- The diffusion of genes (1937) -- 21 The Leslie matrix (1945) -- 22 Percolation and epidemics (1957) -- 23 Game theory and evolution (1973) -- 24 Chaotic populations (1974) -- 25 China’s one-child policy (1980) -- 26 Some contemporary problems 
653 |a Popular works 
653 |a History of Mathematical Sciences 
653 |a Popular Science, general 
653 |a History 
653 |a Biomathematics 
653 |a Mathematical and Computational Biology 
653 |a Mathematics 
653 |a Genetics and Population Dynamics 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
856 4 0 |u https://doi.org/10.1007/978-0-85729-115-8?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 510.9 
520 |a <p>As Eugene Wigner stressed, mathematics has proven unreasonably effective in the physical sciences and their technological applications. The role of mathematics in the biological, medical and social sciences has been much more modest but has recently grown thanks to the simulation capacity offered by modern computers.</p> <p>This book traces the history of population dynamics---a theoretical subject closely connected to  genetics, ecology, epidemiology and demography---where mathematics has brought significant insights. It presents an overview of the genesis of several important themes: exponential growth, from Euler and Malthus to the Chinese one-child policy; the development of stochastic models, from Mendel's laws and the question of extinction of family names to  percolation theory for the spread of epidemics, and chaotic populations, where determinism and randomness intertwine.</p> <p>The reader of this book will see, from a different perspective, the problems that scientists face when  governments ask for reliable predictions to help control epidemics (AIDS, SARS, swine flu), manage renewable resources (fishing quotas, spread of genetically modified organisms) or anticipate demographic evolutions such as aging.</p>