Nonlinear Partial Differential Equations for Scientists and Engineers
Topics and key features: * Thorough coverage of derivation and methods of solutions for all fundamental nonlinear model equations, which include Korteweg--de Vries, Boussinesq, Burgers, Fisher, nonlinear reaction-diffusion, Euler--Lagrange, nonlinear Klein--Gordon, sine-Gordon, nonlinear Schrödinger...
Main Author: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
Boston, MA
Birkhäuser
2005, 2005
|
Edition: | 2nd ed. 2005 |
Subjects: | |
Online Access: | |
Collection: | Springer eBooks 2005- - Collection details see MPG.ReNa |
Table of Contents:
- Linear Partial Differential Equations
- Nonlinear Model Equations and Variational Principles
- First-Order, Quasi-Linear Equations and Method of Characteristics
- First-Order Nonlinear Equations and Their Applications
- Conservation Laws and Shock Waves
- Kinematic Waves and Real-World Nonlinear Problems
- Nonlinear Dispersive Waves and Whitham’s Equations
- Nonlinear Diffusion-Reaction Phenomena
- Solitons and the Inverse Scattering Transform
- The Nonlinear Schrödinger Equation and Solitary Waves
- Nonlinear Klein-Gordon and Sine-Gordon Equations
- Asymptotic Methods and Nonlinear Evolution Equations
- Tables of Integral Transforms