Stopped Random Walks Limit Theorems and Applications

Classical probability theory provides information about random walks after a fixed number of steps. For applications, however, it is more natural to consider random walks evaluated after a random number of steps. Stopped Random Walks: Limit Theorems and Applications shows how this theory can be used...

Full description

Bibliographic Details
Main Author: Gut, Allan
Format: eBook
Language:English
Published: New York, NY Springer New York 2009, 2009
Edition:2nd ed. 2009
Series:Springer Series in Operations Research and Financial Engineering
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
Description
Summary:Classical probability theory provides information about random walks after a fixed number of steps. For applications, however, it is more natural to consider random walks evaluated after a random number of steps. Stopped Random Walks: Limit Theorems and Applications shows how this theory can be used to prove limit theorems for renewal counting processes, first passage time processes, and certain two-dimensional random walks, as well as how these results may be used in a variety of applications. The present second edition offers updated content and an outlook on further results, extensions and generalizations. A new chapter introduces nonlinear renewal processes and the theory of perturbed random walks, which are modeled as random walks plus "noise". This self-contained research monograph is motivated by numerous examples and problems. With its concise blend of material and over 300 bibliographic references, the book provides a unified and fairly complete treatment of the area. The book may be used in the classroom as part of a course on "probability theory", "random walks" or "random walks and renewal processes", as well as for self-study. From the reviews: "The book provides a nice synthesis of a lot of useful material." --American Mathematical Society "...[a] clearly written book, useful for researcher and student." --Zentralblatt MATH.
Physical Description:XIV, 263 p online resource
ISBN:9780387878355