Evolutionary Optimization: the µGP toolkit

This book describes an award-winning evolutionary algorithm that outperformed experts and conventional heuristics in solving several industrial problems. It presents a discussion of the theoretical and practical aspects that enabled μGP (MicroGP) to autonomously find the optimal solution of hard pro...

Full description

Bibliographic Details
Main Authors: Sanchez, Ernesto, Schillaci, Massimiliano (Author), Squillero, Giovanni (Author)
Format: eBook
Language:English
Published: New York, NY Springer US 2011, 2011
Edition:1st ed. 2011
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02746nmm a2200337 u 4500
001 EB000353545
003 EBX01000000000000000206597
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9780387094267 
100 1 |a Sanchez, Ernesto 
245 0 0 |a Evolutionary Optimization: the µGP toolkit  |h Elektronische Ressource  |c by Ernesto Sanchez, Massimiliano Schillaci, Giovanni Squillero 
250 |a 1st ed. 2011 
260 |a New York, NY  |b Springer US  |c 2011, 2011 
300 |a XIII, 178 p  |b online resource 
505 0 |a Evolutionary computation -- Why yet another one evolutionary optimizer? -- The μGP architecture -- Advanced features -- Performing an evolutionary run -- Command line syntax -- Syntax of the settings file -- Syntax of the population parameters file -- Syntax of the external constraints file -- Writing a compliant evaluator -- Implementation details -- Examples and applications -- Argument and option synopsis -- External constraints synopsis -- Index -- References 
653 |a Computer-Aided Engineering (CAD, CAE) and Design 
653 |a Artificial Intelligence 
653 |a Application software 
653 |a Computer-aided engineering 
653 |a Artificial intelligence 
653 |a Computer and Information Systems Applications 
700 1 |a Schillaci, Massimiliano  |e [author] 
700 1 |a Squillero, Giovanni  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
028 5 0 |a 10.1007/978-0-387-09426-7 
856 4 0 |u https://doi.org/10.1007/978-0-387-09426-7?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 006.3 
520 |a This book describes an award-winning evolutionary algorithm that outperformed experts and conventional heuristics in solving several industrial problems. It presents a discussion of the theoretical and practical aspects that enabled μGP (MicroGP) to autonomously find the optimal solution of hard problems, handling highly structured data, such as full-fledged assembly programs, with functions and interrupt handlers. For a practitioner, μGP is simply a versatile optimizer to tackle most problems with limited setup effort. The book is valuable for all who require heuristic problem-solving methodologies, such as engineers dealing with verification and test of electronic circuits; or researchers working in robotics and mobile communication. Examples are provided to guide the reader through the process, from problem definition to gathering results. For an evolutionary computation researcher, μGP may be regarded as a platform where new operators and strategies can be easily tested. MicroGP (the toolkit) is an active project hosted by Sourceforge: http://ugp3.sourceforge.net/