Optimization in Function Spaces With Stability Considerations in Orlicz Spaces

This is an essentially self-contained book on the theory of convex functions and convex optimization in Banach spaces, with a special interest in Orlicz spaces. Approximate algorithms based on the stability principles and the solution of the corresponding nonlinear equations are developed in this te...

Full description

Bibliographic Details
Main Authors: Kosmol, Peter, Müller-Wichards, Dieter (Author)
Format: eBook
Language:English
Published: Berlin De Gruyter [2011]©2011, 2011
Series:De Gruyter Series in Nonlinear Analysis and Applications
Subjects:
Online Access:
Collection: DeGruyter MPG Collection - Collection details see MPG.ReNa
LEADER 03777nam a2200529 u 4500
001 EB000278779
003 EBX01000000000000000098905
005 00000000000000.0
007 tu|||||||||||||||||||||
008 110721 r ||| eng
020 |a 9783110250213 
050 4 |a QA871 
100 1 |a Kosmol, Peter 
245 0 0 |a Optimization in Function Spaces  |h Elektronische Ressource  |b With Stability Considerations in Orlicz Spaces  |c Peter Kosmol, Dieter Müller-Wichards 
260 |a Berlin  |b De Gruyter  |c [2011]©2011, 2011 
300 |a 402 p. 
653 |a MATHEMATICS / Functional Analysis / bisacsh 
653 |a Konvexe Optimierung 
653 |a Banach-Raum 
653 |a (DE-601)10415215X / (DE-588)4056693-6 / Stabilität / gnd 
653 |a Orlicz-Raum 
653 |a Orlicz space 
653 |a Stability 
653 |a Optimization 
653 |a Stability / Mathematical models 
653 |a Functional Analysis 
653 |a (DE-601)104603658 / (DE-588)4004402-6 / Banach-Raum / gnd 
653 |a Orlicz spaces 
653 |a Banach space 
653 |a (DE-601)105384410 / (DE-588)4172841-5 / Orlicz-Raum / gnd 
653 |a Mathematical optimization 
653 |a (DE-601)105653101 / (DE-588)4137027-2 / Konvexe Optimierung / gnd 
700 1 |a Müller-Wichards, Dieter  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b GRUYMPG  |a DeGruyter MPG Collection 
490 0 |a De Gruyter Series in Nonlinear Analysis and Applications 
500 |a Mode of access: Internet via World Wide Web 
028 5 0 |a 10.1515/9783110250213 
773 0 |t DGBA Backlist Mathematics English Language 2000-2014 
773 0 |t DGBA Backlist Complete English Language 2000-2014 PART1 
773 0 |t DGBA Mathematics 2000 - 2014 
773 0 |t E-BOOK PAKET SCIENCE TECHNOLOGY AND MEDICINE 2010 
773 0 |t E-BOOK GESAMTPAKET / COMPLETE PACKAGE 2010 
773 0 |t E-BOOK PACKAGE ENGLISH LANGUAGES TITLES 2010 
856 4 0 |u https://www.degruyter.com/doi/book/10.1515/9783110250213?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 515.392 
520 |a This is an essentially self-contained book on the theory of convex functions and convex optimization in Banach spaces, with a special interest in Orlicz spaces. Approximate algorithms based on the stability principles and the solution of the corresponding nonlinear equations are developed in this text. A synopsis of the geometry of Banach spaces, aspects of stability and the duality of different levels of differentiability and convexity is developed. A particular emphasis is placed on the geometrical aspects of strong solvability of a convex optimization problem: it turns out that this property is equivalent to local uniform convexity of the corresponding convex function. This treatise also provides a novel approach to the fundamental theorems of Variational Calculus based on the principle of pointwise minimization of the Lagrangian on the one hand and convexification by quadratic supplements using the classical Legendre-Ricatti equation on the other. The reader should be familiar with the concepts of mathematical analysis and linear algebra. Some awareness of the principles of measure theory will turn out to be helpful. The book is suitable for students of the second half of undergraduate studies, and it provides a rich set of material for a master course on linear and nonlinear functional analysis. Additionally it offers novel aspects at the advanced level. From the contents: Approximation and Polya Algorithms in Orlicz Spaces Convex Sets and Convex Functions Numerical Treatment of Non-linear Equations and Optimization Problems Stability and Two-stage Optimization Problems Orlicz Spaces, Orlicz Norm and Duality Differentiability and Convexity in Orlicz Spaces Variational Calculus